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Abstract: One of the most challenging endeavors of contemporary research is to describe and
analyze the dynamic behavior of time series arising from real-world systems. To address the need
for analyzing long-range correlations and multifractal properties of multivariate time series, we
generalize the multifractal detrended moving average algorithm (MFDMA) to the multivariate case
and propose a multivariate MFDMA algorithm (MV-MFDMA). The validity and performance of
the proposed algorithm are tested by conducting numerical simulations on synthetic multivariate
monofractal and multifractal time series. The MV-MFDMA algorithm is then utilized to analyze raw,
seasonally adjusted, and remainder components of five air pollutant time series. Results from all
three cases reveal multifractal properties with persistent long-range correlations.

Keywords: multifractal detrended moving average; multivariate analysis; air pollutants

1. Introduction

Research of complex systems has become increasingly important in both natural and
social sciences. Time series derived from complex real-world systems exhibit nonlinear
behavior that cannot be characterized by linear statistical models. Namely, time series
from financial, environmental, and many other fields often manifest long-term memory
and frequent large fluctuations that cannot be adequately explained with normal-like
distributions. Conventional econometric models such as ARMA, GARCH, and EGARCH
fail to capture and accommodate these properties and the nature of such series. The scaling
law mostly used to describe these types of time series is a power law with a scaling
exponent α that (at least) asymptotically describes the behavior of a quantity F as a function
of a scale parameter s: F(s) ∼ sα [1]. The systems characterized by a scaling law typically
represent fractals or multifractals, depending on whether they are described by one scaling
exponent or by a multitude of scaling exponents [1,2].

Various methods have been developed to characterize the properties of fractals and
multifractals. Detrended fluctuation analysis (DFA) is applied to time series data in various
fields, but Peng et al. originally proposed it for identifying long-range dependence in
DNA nucleotide sequences [3]. The DFA algorithm was extended to multifractal detrended
fluctuation analysis (MFDFA) for describing the multifractal properties of time series [4].
Methods based on the moving average have also been developed. The first such method
was introduced for estimating the Hurst exponent of self-affinity signals [5]. It was further
extended to the detrending moving average (DMA) and the multifractal detrending moving
average (MFDMA) by considering the second-order difference between the original time
series and its moving average function [6]. The behavior of the multivariate time series has
been widely studied [1,7–12]. The DFA and MFDFA have been recently extended to the
multivariate cases (MVDFA and MV-MFDFA) to give insight into the multichannel data
and auto-correlation behavior [1,12].
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In this paper, inspired by Xiong and Shang [1] and Zhang et al. [12], we extend
the method of MFDMA to a multivariate case (MV-MFDMA) to analyze the long-range
correlations and multifractal properties of multivariate air pollutant time series data.
A better understanding of the temporal and spatial variability of environmental time series
is essential for modeling various phenomena. Algorithms that can handle multivariate
time series have become exceedingly important, especially in dealing with environmental
issues. Different environmental time series have been previously analyzed in the contexts
of multifractality. For instance, Reference [13] used multifractal analysis on an air pollution
index time series, while References [14,15] used six air pollutants for numerical experiments
in their multifractal analysis. Fine particulate matter pollutants have been of interest for
several research endeavors [16–18], while [19], for example, used a multifractal analysis
on a time series from the European carbon futures markets. Multifractal analysis is often
used for temperature analysis like [20] did for air temperature, or [21] for global methane
concentrations and remotely-sensed temperature anomalies.

We chose data on air pollution as it directly impairs the environment, endangers
entire ecosystems, causes biodiversity loses, and jeopardizes human health. Air pollution
occurs when harmful or excessive amounts of gases, particles, and biological molecules
are introduced into the atmosphere, whether they are of natural or anthropogenic origin.
However, the consensus is that anthropogenic pollution is the main cause of most problems
the environment faces today. Pollution is primarily caused by industrial activities, energy
use, transport, and agricultural activities. Furthermore, some household activities, such as
heating, can cause significant air pollution, although this is mostly relevant for developing
and underdeveloped countries. Coordinated action and great willpower are needed to
make positive changes because some pollutants, such as fine particulate matter and ground-
level ozone continuously create significant health problems, while various emissions
continue to damage the environment. Although air quality improvements are somewhat
noticeable in recent years because of coordinated international actions and global, regional,
and national policies, it is evident that a multidisciplinary approach is needed to advance
this fundamentally important research area and create solutions to improve air quality.

Therefore, our paper has three objectives. We extend the MFDMA method to a
multivariate case, suggest the MV-MFDMA algorithm, and then, conduct numerical exper-
iments on multivariate processes to investigate the performance of the newly proposed
MV-MFDMA. Finally, we apply the MV-MFDMA algorithm to explore the long-range
correlations and multifractal properties of five air pollutant time series.

The remainder of the paper is organized as follows. We introduce the proposed
MV-MFDMA algorithm in Section 2, while the validity of the MV-MFDMA algorithm is
presented in Section 3. In Section 4, we outline the available data set and pre-processing
analysis and provide the results obtained using air pollutant time series. Finally, the con-
clusions are drawn in Section 5.

2. Multivariate Multifractal Detrending Moving Average Analysis

In this section, we propose a multivariate multifractal detrended moving average
algorithm (MV-MFDMA). Let y = (yt,1, yt,2, . . . , yt,p), t = 1, 2, . . . , N denote the p time
series, where N is the number of observations in each time series. The newly constructed
MV-MFDMA algorithm consists of the following steps.

Step 1: Calculate cumulative sums of each time series i = 1, 2, . . . , p:

Yt,i =
t

∑
k=1

yk,i. (1)
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Step 2: Calculate the moving average function of each time series i = 1, 2, . . . , p in a
moving window of size n:

Ỹt,i =
1
n

d(n−1)(1−θ)e

∑
k=−b(n−1)θc

Yt−k,i, (2)

where bηc is the largest integer not larger than η and dηe is the smallest integer not
smaller than η. The parameter θ ∈ [0, 1] specifies the position of the moving window.
In general, the moving average function includes d(n− 1)(1− θ)e data points in the
past and b(n− 1)θc data points in the future. Here, we consider three different values
of parameter θ = 0, 0.5, 1. If θ = 0, then the moving average function is calculated
over all the past (n− 1) data points of the series, and hence, it refers to the backward
moving average. For θ = 0.5, the moving average function includes half past and half
future data points in each window and refers to the central moving average. In the
case of θ = 1, the moving average function is calculated over all the future (n− 1)
data points and refers to the forward moving average. For more details, see [6,22].

Step 3: Calculate the series residue by subtracting the moving average function Ỹt,i from Yt,i:

et,i = Yt,i − Ỹt,i, (3)

where t satisfies the criterion n− b(n− 1)θc ≤ t ≤ N − b(n− 1)θc.
Step 4: Divide the residue series et,i into Nn = bN/n− 1c non-overlapping segments of

equal length n. The segments are denoted by ev such that evt,i = el+t,i for 1 ≤ t ≤ n
with l = (v− 1)n.

Step 5: Calculate the fluctuation variance F2(v, n) as a function of n for an arbitrary seg-
ment v:

F2(v, n) =
1
n

n

∑
t=1
||ev||2, (4)

where ev = (et,1, et,2, . . . , et,p) and || · || stands for the Euclidean norm.

Step 6: Average over all local variances F2(v, n) to obtain the qth order fluctuation function:

FMV−MFDMA
q (n) =

{
1

Nn

Nn

∑
v=1

[Fq(v, n)]

} 1
q

(5)

where q 6= 0 and Fq(v, n) = (F2(v, n))q/2 If q = 0,

FMV−MFDMA
0 (n) =

1
Nn

Nn

∑
v=1

ln[F(v, n)]. (6)

Step 7: Vary the values of segment size n to determine the power law relation between the
function FMV−MFDMA

q (n) and the size scale n. If a time series exhibits multifractal
properties, then FMV−MFDMA

q (n) for large values of n will follow a power law type
of scaling relation, such as:

FMV−MFDMA
q (n) ∼ nh(q), (7)

where h(q) denotes the generalized Hurst exponent.

The generalized Hurst exponent h(q) can be attained by the slope of the log-log plot
of FMV−MFDMA

q (n) versus n through the method of ordinary least squares. The scaling
exponent h(q) when q > 0 traces the scaling behavior of the segments with larger fluc-
tuations. Similarly, it shows the scaling behavior of segments with small fluctuations
for q < 0. Usually, the large fluctuations are identified by a smaller scaling exponent
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h(q) for multifractal series. For monofractal time series, h(q) is independent of q. If only
short-range correlations or no correlations exist in the sequence, then the scaling exponent
h(2) equals 0.5. In this case, the time series display a random walk behavior. However,
if there is long-range power law correlation, then h 6= 0.5. Furthermore, if 0.5 < h(2) < 1,
the long-range auto-correlations are persistent, which indicates that an increase is likely to
be followed by another increase. If 0 < h(2) < 0.5, we have long-range auto-correlations
with anti-persistent behavior [3,4]. In this case, an increase is likely to be followed by
a decrease.

Such a defined generalized Hurst exponent h(q) is directly related to the multifractal
scaling exponent τ(q): τ(q) = q · h(q)− 1. The monofractal time series are characterized
by a linear form for the multifractal scaling exponent. The multifractality of the time
series can be characterized by the singularity spectrum f (α) of the Holder exponent α.
It is known that α = dτ

dq and f (α) = qα− τ(q). The singularity spectrum f (α) indicates
the dimension of the subset of the series that is characterized by α. The spectrum gives
information about the relative dominance of various fractal exponents present in the series,
while α characterizes the strength of the singularity. The wider the spectrum, the richer the
multifractality behavior.

Note that if i = 1, then the MV-MFDMA reduces to the standard MFDMA. On the
other hand, if i ≥ 2, the MV-MFDMA investigates the multifractal features and long-range
correlation properties of the multivariate process of dimension i as a whole.

3. Numerical Experiments on Synthetic Data Sets

The validity of the proposed MV-MFDMA algorithm is investigated in this section
by performing numerical simulations on synthetic multivariate time series data. Synthetic
data are modeled by the autoregressive fractionally integrated moving-average process
(ARFIMA) following the procedure in [12]. Let us recall that the long-range correlations in
stochastic variables can be modeled as:

z(t) = Z(d, t) + ε(t), (8)

where ε(t) follows a standard normal distribution, d ∈ (−0.5, 0.5) is a memory parameter
related to the Hurst exponent hz = 0.5 + d, and Z(d, t) = ∑∞

n=1 an(d)z(t − n), an(d) =
dΓ(n − d)/(Γ(1− d)Γ(n + 1)) [12]. Then, the two-component ARFIMA process can be
defined as:

x(t) = WX(d1, t) + (1−W)Y(d2, t)εx(t) (9)

y(t) = (1−W)X(d1, t) + WY(d2, t)εy(t), (10)

where εx(t) and εy(t) follow a standard normal distribution N(0, 1), d1, d2 ∈ [0, 0.5] are the
scaling parameters, and W ∈ [0.5, 1] is a free parameter that controls the coupling strength
between variables x and y [12]. If W = 1, then the variables x and y are fully decoupled
and represent two separate ARFIMA processes. On the other hand, if W decreases from
one to 0.5, then the correlations between variables x and y increase.

In the experiments, we considered multivariate monofractal time series, both indepen-
dent and correlated. The length of each time series was N = 214. The results were averaged
over 20 realizations of each type of test series.

3.1. Independent Multivariate Monofractal Series

We generated a trivariate uncorrelated monofractal time series with parameters cor-
responding to the scaling exponent h = 0.5 (d = 0) using the ARFIMA model (9) and
(10). These series were considered as uncorrelated since the initial data channels were
realizations of mutually independent uncorrelated monofractal series [12].

Figure 1 displays the scaling exponents h(q) as a function of q and multifractal spectra
f (α) obtained by applying the MV-MFDMA to trivariate uncorrelated monofractal series,
for θ = 0, 0.5, 1. As expected, regardless of θ, for trivariate uncorrelated monofractal
series, the estimated scaling exponent h(q) equals 0.5. This result implies the monofractal
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properties of multivariate series and holds regardless of the parameter θ. The multifractal
spectra f (α) confirms the validity of the algorithm.
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Figure 1. Uncorrelated monofractal series.

Next, we simulated trivariate anti-correlated and correlated monofractal time series
with the following scaling exponents: h = 0.3 (d = −0.2) and h = 0.7 (d = 0.2); see
Figure 2. The results show that h(q) is independent of q and practicality equal to 0.3 and
0.7, respectively. These results hold regardless of the chosen parameter θ.
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Figure 2. Independent monofractal series: the scaling exponents.

3.2. Correlated Bivariate Monofractal Series

The MV-MFDMA method was also applied and tested on the correlated bivariate time
series simulated by the two-component ARFIMA model following the procedure in [12].
The following values of a free parameter controlling the coupling strength between time
series were considered: W = 0.5, 0.7, 0.9, while the parameters of the model d1 = d2 = 0.2
corresponded to scaling coefficients h1 = h2 = 0.7. Figure 3 shows the average MV-
MFDMA results of correlated bivariate time series with different correlation levels for
θ = 0, 0.5, 1. If we fix the coupling parameter W, the scaling exponents h(q) do not depend
on the value of q and are nearly equal to the value of 0.7. This result is in harmony with the
scaling exponent of individual univariate series. Moreover, even if we change the coupling
parameter W, the scaling exponents h(q) remain the same for different values of q.
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Figure 3. Correlated monofractal series: the scaling exponents.

3.3. Multivariate Multifractal Series

Finally, we applied the MV-MFDMA to multifractal time series simulated by the
following binomial multifractal model:

xk = pn(k−1)
x (1− px)

nmax−n(k−1), (11)

where px ∈ (0, 0.5) and n(k) is the number of the digits equal to one in the binary represen-
tation of index k [12]. More precisely, we simulated trivariate time series x, y, z according
to (11) and chose px = 0.2, py = 0.3 and pz = 0.4, respectively. The proposed algorithm
was applied to the generated series, and the obtained results are shown in Figure 4 in terms
of scaling exponent h(q) and multifractal spectra f (α) for θ = 0.5. We also present the
same results for individual time series.
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Figure 4. Multifractal series.

The individual univariate time series manifest the expected multifractal characteris-
tics, while it can be observed that the scaling exponents h(q) of the considered trivariate
multifractal series obtained by the new MV-MFDMA vary among the scaling exponents
h(q) of individual univariate series. For negative values of q, the scaling exponents h(q)
of the trivariate multifractal series are most harmonized to the scaling exponents of a
univariate series for pz = 0.4. On the other hand, for positive values of q, it is most adjusted
to the scaling exponents of a univariate series for px = 0.2. This phenomenon was also
revealed in [12]. The large fluctuations of univariate series with px = 0.2 have a major
impact on the large fluctuation of multivariate series. Similarly, the major impact on the
small fluctuations of multivariate series originates from the small fluctuations of univariate
series with pz = 0.4.

Based on the presented results, we can observe that the MV-MFDMA algorithm
preserves the properties of the univariate MFDMA. Namely, it is known that algorithms
based on the multifractal detrending moving average are sensitive to the sample size,
the selection of the scaling range, the choice of q-orders, and the position of the moving
window [23]. These algorithms require a larger sample size, i.e., a larger number of
observations are needed to obtain a more accurate estimation of the multifractal spectrum.
Then, the accuracy is also influenced by the selection of the appropriate scaling range.
Equal spacing between scales is suggested, where the scaling range varies from 10 to
N/10 [23]. The choice of the q-orders should include both positive and negative values.
It is evident from the presented results that the algorithm depends on the position of the
moving window. According to [24], the lowest accuracy is obtained when θ = 0.5, while
θ = 0 and θ = 1 provide higher accuracy.

A comparison of the proposed MV-MFDMA algorithm with other algorithms for
detecting multifractal properties is given in Table 1.



Mathematics 2021, 9, 711 8 of 17

Table 1. Comparison of the algorithms for detecting multifractality.

Method Description Comments

MFDFA [4] • applies to univariate time
series

• requires a larger sample size
for accurate estimates

• detects a long-range
correlation and multifractal
properties

• non-overlapping
segmentation can cause
pseudo fluctuation errors

• detrends the original series
by removing its average

MFDMA [6] • applies to univariate time
series

• requires a larger sample size
for accurate estimates

• detects a long-range
correlation and multifractal
properties

• the backward MFDMA
outperforms the MFDFA

• detrends the original series
by removing the moving
average function

MVDFA [1] • applies to multivariate time
series

• preserves the characteristics
of the univariate DFA

• represents a generalization
of the DFA

• characterized by one scaling
exponent

• describes the
autocorrelations’ behavior

• requires an equal length of
time series

MV-MFDFA [12] • applies to multivariate time
series

• preserves the characteristics
of the univariate MFDFA

• represents a generalization
of the MFDFA

• requires an equal length of
time series

• detects a long-range
correlation and the
multifractal properties of
multichannel data directly

MV-MFDMA Section 2 • applies to multivariate time
series

• preserves the characteristics
of the univariate MFDMA

• represents a generalization
of the MFDMA

• requires an equal length of
time series

• detects a long-range
correlation and the
multifractal properties of
multichannel data directly

• represents an alternative of
both the MV-MFDFA and the
MFDMA

4. Air Pollutant Time Series via MV-MFDMA

In this section, we present the data and analyze the multifractal properties of multi-
variate air pollutant time series. We performed the MV-MFDMA algorithm on raw series,
seasonally adjusted series, and remainder components and then compared the results.

4.1. Data

Data for this paper were acquired from [25]. For the purposes of testing the MV-MFDMA,
we used datasets of five air pollutants presented in Table 2. To obtain uniform series in terms
of length, values were used only on days when all five variables were measured.
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Table 2. Variables.

Variable Time-Span Unit Frequency State Monitor Site

Carbon Monoxide (CO) 2010–2019 ppm daily California 60010009
Nitrogen Dioxide (NO2) 2010–2019 ppb daily California 60010009
Ozone (O3) 2010–2019 ppm daily California 60010009
Particulate Matter (PM2.5) 2010–2019 µg/m3 daily California 60010009
Sulfur Dioxide (SO2) 2010–2019 ppb daily California 60010011

Table 3 provides the descriptive statistics of the air pollutant time series. Positive
values of skewness indicate that the distributions of all air pollutants are positively skewed.
Kurtosis is greater than three for all air pollutants, which indicates that the homogeneity of
the distribution in all cases is leptokurtic in relation to the normal distribution. The Jarque–
Bera test rejects the null hypothesis of normality in air pollutants’ series distribution, which
is further corroborated by the fact that kurtosis is larger than three, and there is no zero
skewness in any of the five cases. The statistics of the augmented Dickey–Fuller (ADF) unit
root test based on both the Akaike (AIC) and Schwarz information criterion (SIC) reject the
null hypothesis of a unit root at the 1% significance level. Additionally, the Philips–Perron
(PP) test also rejects the null hypothesis of a unit root at the same significance level. Both
the ADF and PP tests were done for both the trend and intercept and just the intercept cases.
The t-statistics for all six cases of unit root tests are also presented in Table 3 and indicate
that the air pollutants series are stationary.

Table 3. Descriptive statistics: raw data series.

CO NO2 O3 PM2.5 SO2

Mean 0.4375 21.4214 0.0280 8.8429 1.9949
Std. Dev. 0.2508 11.0571 0.0091 7.7520 2.7298
Skewness 1.4251 0.6122 0.1371 8.5209 7.9297
Kurtosis 7.4013 3.4522 4.2429 131.7860 141.7981
Jarque–Bera 3825.237 * 237.0335 * 225.3758 * 2,347,909 * 2,715,223 *
Observations 3339 3339 3339 3339 3339

ADF (AIC) intercept −4.4779 * −4.8280 * −6.6122 * −12.1969 * −7.4589 *
trend and intercept −4.5956 * −5.0117 * −6.6436 * −12.1979 * −8.6055 *

ADF (SIC) intercept −5.9964 * −5.8778 * −8.0346 * −16.5856 *−10.4407 *
trend and intercept −6.1243 * −6.0941 * −8.0991 * −16.5850 *−11.4677 *

PP intercept −27.8682 * −34.4109 *−40.4884 *−19.5129 *−52.3557 *
trend and intercept−28.07811 *−35.2493 *−40.7289 *−19.5138 *−50.2368 *

Note: ADF—augmented Dickey–Fuller unit root test; PP—Philips–Perron unit root test; AIC—Akaike information
criterion; SIC—Schwarz information criterion; *—stat.sig.< 0.01.

The state of California was chosen because it is usually singled out as a leader in air
pollution among other U.S. states. Even though all air pollutants are high in California,
the O3 levels particularly stand out. Since seasonal trends can sometimes influence the
multifractal behavior of time series, it is preferable to perform seasonal decomposition;
see for example [15,26,27]. It is interesting to note that a common approach for analyzing
trendless fluctuations is absent. Nigmatullin and Vorobev [28] stated that in most cases,
authors use traditional methods, such as the Fourier method, the wavelet method, Yul-
menteyev’s method, and Timashev’s method or some additional processing algorithms that
are also based on conventional methods containing some model assumptions and treatment
methods associated with continuous mathematics. Nigmatullin, Lino, and Maione [29]
pointed out that these sets of methods solve some specific tasks, but cannot be viewed
as universal. To address this gap, a universal “platform” for treating various types of
different trendless sequences has been proposed (see [28,29] for more details). For the
purposes of this paper, we adjusted the considered time series by performing seasonal
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and trend decomposition using LOESS (STL) decomposition [30]. Through this algorithm,
each time series is additively decomposed into deterministic trends, seasonal components,
and stochastic remainder components. Removing seasonal components from the raw time
series does not significantly influence the descriptive statistics results. All the descriptive
statistics and unit root tests conclusions from the raw data are valid for the seasonally
adjusted data as well (see Appendix A). Figure 5 shows that the seasonal components
of all time series are characterized by the annual oscillation. Figure 5 also demonstrates,
among others, the evolution trend of five air pollutant concentration series. The PM2.5 and
SO2 series are more prone to extreme spikes, whereas NO2, CO, and O3 concentrations have
somewhat different trends in winter and summer, indicating a seasonal inclination. On the
other hand, the trend components are characterized by a very small range of variability
and do not show a large temporal evolution. The range of variability is the largest for series
NO2 and PM2.5. The remainder components of all time series do not display discernible
patterns, and there are small fluctuations around zero.

(a) CO (b) NO2

(c) O3 (d) PM2.5

(e) SO2

Figure 5. STL decomposition of air pollutant time series.
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4.2. Results

The MV-MFDMA presented in Section 2 was applied to the above-mentioned raw
and seasonally adjusted air pollutant time series obtained upon removal of the seasonal
components, as well as on the remainder components of the series. Applying multifractal
analysis on the remainder components ensures the identification of the dynamic character-
istics of air pollutants’ inner fluctuations and enhances the robustness of the results. We set
the range of time scale n to be 10 < n < N/10, where N is the length of each time series.

Figure 6 illustrates the behavior of the MV-MFDMA fluctuation function versus time in
the logarithmic scale for all three case: raw, seasonally adjusted, and remainder. The plots
are presented for q = −4, 0, 4 and fixed θ = 0.5. All curves are approximately linear
under large scales, indicating the power law behavior and the presence of multifractality.
The MV-MFDMA fluctuation functions have quite similar behavior in all three cases, while
we can note that fluctuations are the smallest for the remainder components. Fluctuations
are observed regardless of the q values for small log(s) values. That is, the results show
crossover time scales, i.e., different scaling laws and scaling exponents for time scales
n < n∗ (where n∗ ≈ 3.32 for raw and n∗ ≈ 12 for the other two cases). When n > n∗, we
find that the MV-MFDMA fluctuation functions nicely respect the scaling relation, i.e., scale
well with the scale size. Additionally, although not displayed, the MV-MFDMA is tested
for θ = 0, 1. The results confirm the power law behavior and demonstrate the absence of
large fluctuations.
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Figure 6. Power law dependence of the fluctuation functions with respect to the scale (log-log plots).

Figure 7 shows the values of the generalized Hurst exponents h(q) versus q, where the
variation of q belongs to the interval [−4, 4] for raw, seasonally adjusted, and remainder
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series. In all cases for θ = 0, 0.5, 1, we observe the dependence of MV-MFDMA h(q) on q.
The MV-MFDMA h(q) monotonically decreases when the value of q increases. This result
implies the multifractality of the examined time series. It is interesting to note that raw
and seasonally adjusted series display almost the same behavior of the generalized Hurst
exponents h(q) for all values of parameter θ. On the contrary, the values of the generalized
Hurst exponents h(q) for the remainder series are above 0.5 for θ = 0.5, which indicates a
strong long-term persistence. However, in the cases of the forward and backward moving
average, the values of h(q) are lower.
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 = 1

(c) Remainder

Figure 7. Generalized Hurst exponents.

Figure 8 displays the multifractal spectra of α ∼ f (α) via the Legendre transform.
The shapes of the inverted U parabola of the spectra confirm the fact of the multifractality
in the time series. The smallest range of the multifractality is observed when θ = 0.5.
The results hold for all raw, seasonally adjusted, and remainder series.

With the aim of quantifying the degree of the multifractality of the multivariate system,
we use the following measures (12) and (13) [12]:

∆h = max h(q)−min h(q) (12)

∆α = αmax − αmin. (13)
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Figure 8. The multifractal spectra.

The larger the measures of ∆h and ∆α, the richer and stronger the degree of mul-
tifractality of the time series is. Tables 4–6 present the scaling exponent h(2) and the
multifractality degrees ∆h and ∆α for the individual and multivariate air pollutants for all
levels θ = 0, 0.5, 1 and for raw, seasonally adjusted, and remainder series, respectively.

Table 4. The scaling exponent h(2), multifractality degrees ∆h, and ∆α: raw series.

CO NO2 O3 PM2.5 SO2 Multiv.

θ = 0
h(2)

0.9980 1.0164 1.0190 0.9823 0.9785 1.0076
θ = 0.5 0.9295 0.8741 0.7073 0.7071 0.6414 0.8463
θ = 1 0.9937 1.0126 1.0190 0.9775 0.9837 1.0101

θ = 0
∆h

0.2204 0.1544 0.0559 0.3006 0.2016 0.1525
θ = 0.5 0.2074 0.1658 0.0301 0.2875 0.4126 0.1807
θ = 1 0.2126 0.1501 0.0559 0.2844 0.3074 0.1387

θ = 0
∆α

0.3888 0.2678 0.1078 0.6490 0.5710 0.3099
θ = 0.5 0.3854 0.3003 0.0650 0.6950 0.7838 0.4080
θ = 1 0.3667 0.2573 0.1078 0.6045 0.6098 0.2681
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Table 5. The scaling exponent h(2), multifractality degrees ∆h, and ∆α: seasonally adjusted series.

CO NO2 O3 PM2.5 SO2 Multiv.

θ = 0
h(2)

1.1277 1.2088 1.0583 1.0980 1.1991 1.1140
θ = 0.5 1.1333 0.9998 0.7086 0.8579 0.7928 0.9192
θ = 1 1.1399 1.1881 1.0608 1.1425 1.2301 1.1149

θ = 0
∆h

0.1758 0.2485 0.0522 0.2778 0.2814 0.1551
θ = 0.5 0.2988 0.1793 0.0190 0.3510 0.2923 0.1559
θ = 1 0.2002 0.2162 0.0570 0.3208 0.3142 0.1490

θ = 0
∆α

0.3051 0.4907 0.1006 0.6269 0.5462 0.3076
θ = 0.5 0.6336 0.3357 0.0385 0.8267 0.5706 0.3557
θ = 1 0.3834 0.4052 0.1150 0.7193 0.6135 0.2891

Table 6. The scaling exponent h(2), multifractality degrees ∆h, and ∆α: remainder component.

CO NO2 O3 PM2.5 SO2 Multiv.

θ = 0
h(2)

0.6209 0.6123 0.5481 0.3940 0.4522 0.5727
θ = 0.5 1.0275 0.9819 0.8858 0.7224 0.6188 0.9279
θ = 1 0.6206 0.6065 0.5603 0.3878 0.4435 0.5669

θ = 0
∆h

0.4764 0.3253 0.3109 0.6585 0.5222 0.3471
θ = 0.5 0.1945 0.1448 0.1793 0.4061 0.3391 0.1974
θ = 1 0.4954 0.3624 0.3160 0.6304 0.3737 0.3632

θ = 0
∆α

0.8184 0.6024 0.5106 1.1022 1.0444 0.7440
θ = 0.5 0.3740 0.2705 0.3500 0.7443 0.6627 0.4341
θ = 1 0.8240 0.6388 0.5368 1.0571 0.7054 0.7603

Raw and seasonally adjusted series have similar characteristics of multifractal pa-
rameters. For θ = 0 and θ = 1, the values of h(2) are approximately around one, while
in the case of θ = 0.5, the values are a bit lower, namely h(2) ≈ 0.85 and h(2) ≈ 0.9
for raw and seasonally adjusted series, respectively. This holds for both individual and
multivariate time series. The results imply that both individual and multivariate series
show persistent long-range correlation. Analogous to 1/ f , noise can be deducted in the
case of the scaling exponent h(2) of multivariate time series less than one. In the case of the
remainder components, the fluctuations are also characterized by a long-term persistence.
However, the values of h(2) suggest that the remainder components are characterized by a
weak persistence suggesting stable trends in the next period. In summary, multivariate
series of five air pollutants show consistent, positive autocorrelation behavior. In all three
cases, an interesting fact is that all values of ∆h and ∆α are significantly larger than zero.
On the other hand, the values for multivariate air pollutants range around those values
for individual time series and are lower than the maximum values of the individuals in
each case. Both the ∆h and ∆α values in the remainder components are higher than the
values of both raw and seasonally adjusted series. This finding reveals that the considered
air pollutants can be characterized by multifractality behavior. Furthermore, since the
relationship always exists among the individuals, it possibly makes the multifractal level
weaker. As a result, the ∆h and ∆α values for multivariate time series are smaller than the
maximum and average of the ∆h and ∆α values of individuals.

5. Conclusions

The multivariate approach and analysis may have a key role in cases when a high
degree of uncertainty and coupling underlying dynamical mechanics is present. Hence,
in this paper, we introduced the multivariate multifractal detrended moving average anal-
ysis (MV-MFDMA) as a multivariate generalization of the MFDMA method. The proposed
method provides a way to analyze and investigate fractal dynamics information in multi-
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variate time series data sets generated by complex systems. The validity of the proposed
method was investigated by conducting numerical simulations on synthetic monofractal
and multifractal time series. The correlation properties of multivariate monofractal time
series are in line with the univariate case, and the fractal behavior of correlated bivariate
time series is independent of its correlation level. In the case of the multivariate multifractal
series, the multivariate system exhibits multifractal properties. The corresponding multi-
fractal degree decreases with the decreasing of the multifractal degree of individual series.
According to our simulation results, the MV-MFDMA represents a reliable technique for
measuring the long-term correlations of non-stationary multivariate time series.

The MV-MFDMA was also utilized to investigate the multifractal properties of air
pollutant time series where the individual air pollutants were considered as different vari-
ables from the same system. We analyzed raw and seasonally adjusted time series of air
pollutants obtained upon removing the annual oscillations. We found that air pollutants
exhibited multifractal auto-correlation behavior, even after removing the seasonal pattern.
In both cases, the air pollutant time series data exhibited multifractal properties, with per-
sistent long-range correlations. In order to capture the dynamic characteristics of the inner
fluctuations of the air pollutants, we also applied the algorithm to the stochastic remainder
components of the time series. The results confirmed that multivariate time series of air
pollutants possessed multifractal properties and exhibited long-term persistence such that
an increase (decrease) in the previous period will be followed by an increase (decrease) in
the next period.

The findings of this paper provide an elevated understanding of the evolutionary
activity and temporal links of five air pollutants in the state of California. In general, it is
necessary to achieve a better comprehension of the associations between different air pollu-
tion time series to manage the environmental air quality based on evidence. Researchers
from any scientific field that operate with multivariate frequent time series are encouraged
to apply the proposed algorithm since it provides an improvement in detecting long-range
correlations and multifractal properties of multichannel data. However, the proposed algo-
rithm has certain limitations. It applies only to frequent and large-dimensional multivariate
time series with an equal length N. Moreover, when applying the proposed algorithm,
it is suggested to use an equal spacing between scales, where the scaling range varies
from 10 to N/10, while the q-orders should include both positive and negative values.
Finally, in some cases, seasonality can influence the selected time series, so if that is the
case, the series should be firstly depersonalized before applying the algorithm. Future
research papers can use the proposed MV-MFDMA algorithm, not only the environmental
quality ones, but on the widest range of different real-world complex system time series,
for example on financial, economic, meteorological, and health care time series. Therefore,
directions for future research should go towards studying new time series when a better
comprehension of their interconnections is necessary.
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Appendix A

Table A1 presents descriptive statistics of seasonally adjusted series.

Table A1. Descriptive statistics: seasonally adjusted series.

CO NO2 O3 PM2.5 SO2

Mean 0.4381 21.4366 0.0279 8.8198 1.9964
Std. Dev. 0.2422 10.7698 0.0088 7.4037 2.6018
Skewness 1.2054 0.3761 0.1193 6.5486 6.0940
Kurtosis 6.0841 3.0578 3.7585 96.2279 102.8836
Jarque–Bera 2131.856 * 79.1695 * 87.9690 * 1,233,060 * 1,408,679 *
Observations 3339 3339 3339 3339 3339

ADF (AIC) intercept −4.3080 * −4.6241 * −6.5685 * −12.3825 * −7.2438 *
trend and intercept −4.4298 * −4.7864 * −6.5767 * −12.3867 * −8.5387 *

ADF (SIC) intercept −5.8546 * −5.7474 * −7.9224 * −16.3571 *−10.2605 *
trend and intercept −5.9854 * −5.9493 * −7.9653 * 16.3589 * −11.4403 *

PP intercept −26.7990 *−33.2027 *−39.6205 *−19.1607 *−51.9978 *
trend and intercept−26.9846 *−34.1516 *−39.8951 *−19.1657 *−49.5006 *

Note: ADF—augmented Dickey–Fuller unit root test; PP–Philips–Perron unit root test; AIC—Akaike information
criterion; SIC—Schwarz information criterion; *—stat. sig. < 0.01.
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