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Abstract: Photovoltaic power is playing an ever-increasing role in the energy mix of countries
worldwide. It is a stochastic energy source, and simulation models are needed to establish reliable risk
management. This paper presents a novel approach for simulating hourly solar irradiation and—as a
consequence—photovoltaic power based on easily accessible data such as wind, temperature, and
cloudiness. Solar simulations are generated via a multiplication factor that scales the maximum
possible solar irradiation. Photovoltaic simulations are then derived using formulas that approximate
the physical interdependencies. The resulting simulations are unbiased on an annual level and
reasonably reflect historic irradiation movements. Interpreting our approach as a descriptive model,
we find that error values vary over the year and with granularity. Errors are highest when considering
hourly values in wintertime, especially in the morning or late afternoon.

Keywords: photovoltaic power; solar irradiation; simulation; cloudy sky model

1. Introduction

Climate change is a major concern for the international community, with global warm-
ing being among the most visible effects [1]. In recent years, governments have been
increasing efforts to fight climate change and global warming, and hence environmental
degradation—challenges that confront modern society and cause numerous problems [2,3].
Thereby, the focus primarily lies on significantly reducing greenhouse gas emissions. Trans-
forming energy production towards an (almost) carbon-neutral future becomes essential
in this context. However, challenges are ample. Financial costs are considerable, and
it remains challenging to integrate renewable energy into the electricity grid on a large
scale [4,5]. The primary reason is that weather is stochastic, and so is wind or photovoltaic
energy. Power utilities have to provide backups to prevent blackouts; companies and more
minor participants such as individual households have to calculate with uncertain profits
when deciding about investments in renewable energies such as rooftop solar panels.

Regarding photovoltaic power, there are numerous commercial and non-commercial
tools for calculating the financial value of a solar panel. To the authors’ best knowledge,
these tools are exclusively based on historical weather observations and yield an average
payoff for a panel. No risk analysis such as computing quantile values is possible for decid-
ing about substantial financial investments with amortization periods of 10–20 years—an
aspect that is becoming even more important in Germany as feed-in tariffs and, subse-
quently, profitability are decreasing.

The literature already offers some approaches to simulate photovoltaic power (see
Section 2 and the discussion in Section 5.2), which is a challenging task. The output of a
photovoltaic panel is influenced, among other things, by temperature, air pressure, aerosol
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optical density, precipitation, ozone concentration, and humidity. Models cope with this
complexity either by ignoring it or integrating it via adequate formulas. As a result, we
have either univariate models limited solely to photovoltaic or irradiation data or fairly
complex models requiring computational power and/or multiple input variables.

Univariate models do not explicitly model interdependencies between irradiation
and variables such as temperature, which is required when using irradiation simulations
in more complex scenarios such as optimizing a battery charging strategy. On the other
hand, if too many input variables are required, we risk data problems regarding availability
and/or quality data problems. This article now presents a novel model for risk management
by providing Monte Carlo simulations for solar irradiation and relevant factors such as
cloud coverage and temperature. Based on formulas from Myer’s cloudy sky model
(CSM) [6], we develop an understandable, straightforward, and convenient concept for
deriving corresponding photovoltaic values and hence a basis for the risk analysis of a
system whose payoff depends on solar irradiation. Our approach can be applied to any
location worldwide.

There is no straightforward concept for evaluating the quality of our simulation
model—especially regarding the photovoltaic simulations. Hence, we focus on irradiation
values and the ability of our model to replicate true values. First, we checked both solar
irradiation and temperature simulations for biases and found none, which is important
as annual photovoltaic values can be considered reasonably accurate. Errors occur only
regarding the distribution of solar hours over the year. Additionally, considering the shape
of the simulated scenarios, these look reasonable compared to historical observations.
When looking at the error levels, i.e., when interpreting our approach as a descriptive
model, we see that error values vary with granularity and over the year. Relative errors of
monthly irradiation amounts are maximally about 8%, whereas relative errors for hourly
values vary between 17% and over 43%. We see the highest values in winter, especially
in the margin hours (early morning, late afternoon). Note that these numbers have to be
treated with care: Irradiation values in wintertime are comparably small, especially in the
morning hours, so small absolute differences can result in larger relative errors. Eventually,
errors are also higher for tilt solar panels (the common case) than for horizontal surfaces.

To sum up, when interpreting our approach as an explanatory model or forecasting
model for solar irradiation, it is not an adequate alternative to existing approaches. How-
ever, our purpose is to simulate and not describe or forecast. Additionally, alternative
models such as the Clear Sky Model of Bird and Hulstrom [7] require additional infor-
mation such as aerosol density, which can be fairly hard to obtain, especially if historical
data are needed. Moreover, we present reasonable weather simulations that are unbiased
and are based on a model that can be implemented on almost any computer. It is ideal
for off-grid systems in remote areas or for flexible off-grid systems such as the Origami
photovoltaic panel suggested by Jasmin and Taheri [8]. An extensive comparison to other
models can be found in Section 5.2.

The remainder of this paper is organized as follows. Section 2 presents a model
for solar power production, while in Section 3 we discuss modeling temperatures and
cloudiness. In Section 4 we analyze our model given real-world data. Section 5 contains a
critical reflection of the results, whereby conclusions are drawn in Section 6.

2. Photovoltaic Power Production

For generating solar power scenarios, a stochastic model is needed. In literature, we
see three alternative approaches:

(A) A direct model for photovoltaic power production. One possibility is to model
photovoltaic power as a univariate time series [9] or to apply a stochastic state-space
model [10]. Despite the advantage of considering only a one-dimensional data set, this
approach comes with a few challenges. We have multiple seasonality with constantly
varying periods and amplitude (sunrise and sunset change every day) and sudden
disruptions, e.g., due to rain (which might also have a seasonal impact).
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(B) A separate model for all input parameters. The second option is to first design
separate models for all relevant influence factors, especially for irradiation and tem-
perature. Given the respective numbers, such as the solar panels’ tilt, we can then
calculate the expected amount of photovoltaic power. Abdel-Nasser and Karrar [11]
set up a model to forecast photovoltaic power based on neural networks and various
input parameters. They ignore any knowledge about physical interactions and let
the neural network decide. Miozzo et al. [12] apply a Markov process for simulation
purposes. Barukčić et al. [13] propose an alternative stochastic approach. These ideas
look promising because they are simple. Nonetheless, all models face the problem
that temperature is relatively easy to model, but irradiation is not—mainly because of
the dynamic seasonality described in Alternative (A).

(C) Physical deterministic models. A physical deterministic model establishes a link
between input factors such as temperature, cloudiness, albedo factor, and solar irra-
diation. Those factors are then modeled, including a stochastic component for each
one, allowing simulations to be generated. Politaki and Alouf [14] proceed similarly
by combining a deterministic model for solar power production under clear sky con-
ditions with a Markov-based approach for cloudiness. A widely used fundamental
model for modeling solar power is the clear sky model of Bird and Hulstrom [7],
or the extension to cloudy conditions of Myers [6], which is accordingly called the
Cloudy Sky Model (CSM). More complex solar irradiation models [15–17] for clear
sky conditions are more accurate than Bird and Hulstrom’s [7] model. However,
they require a much larger number of input data, making them inadequate for daily
use. Often, detailed live data for atmospheric input factors are missing or potentially
skewed, which is the advantage of simplified models such as the one of Bird and
Hulstrom [7]. The approach in Hofmann and Seckmeyer [18] also includes the possi-
bilities of clouded skies and tries to balance complexity (it considers aerosol depth,
for example) and simplicity. Additionally, they give a good overview of alternative
approaches and benchmark them. For another summary of different concepts, please
refer to Zhang et al. [5] or Khatib et al. [19], which focus on forecasting models.

The setup of the CSM is straightforward, easy to understand, and reasonable; only
very few input factors are required. Moreover, those factors used in the CSM are much
easier to model than solar radiation itself. Hence, we use the CSM as a basic model for our
calculations.

2.1. Solar Power Production Modeling

Here, we introduce the relevant basics of solar power production. For an overview
of how all the variables below are connected, please refer to Figure A1 in Appendix A.
The output of electric power generated by a photovoltaic panel at time instance t, PVt, is
given by

PVt = Φt · ηt (1)

with ηt being the photovoltaic or solar panel’s efficiency and Φt the solar flux. Thereby,
ηt is time-dependent, as it is influenced by the panels’ surface temperature Tempsur f

t . It
can be modeled by a linear relationship between both variables [20,21]. In most cases,
the relationship between ηt and Tempsur f

t is derived from the respective photovoltaic
panel data sheets [22,23]. For the modules produced by the German company SolarEdge,
ηt = 18.9 ·

(
100%− 0.4%/°C ·

(
Tempsur f

t − 25 °C
))

. The surface temperature Tempsur f
t is

calculated via the total solar irradiation Etot
t received by the photovoltaic system’s surface

of size AS with an incidence angle Θt at hour t:

Tempsur f
t = Tempair

t + 0.03
[

°Cm2

Wh

]
· Etot

t (2)
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where Tempair
t denotes the average air temperature. The solar flux Φt is defined as

Φt = Etot
t · AS · cos Θt. (3)

The incidence angle Θt can be calculated (R package solaR) using information about
the movements of earth and sun as follows [24]

Θt = arccos(cos ΘZ
t · cos β + sin ΘZ

t · sin β · cos
(

γS
t − γ

)
), (4)

where β denotes the panel’s tilt, ΘZ
t the solar zenith angle at that specific time, γS

t the
corresponding sun’s azimuth angle, and γ the panel’s azimuth. Note that Θt is also a zenith
angle. The solar position algorithm of Michalsky [24] allows calculating all these values
with a maximum error of ±0.01◦ in both solar zenith and azimuth angle [25], which is
accurate enough for the application used in this work. This algorithm also calculates the
extraterrestrial irradiation Eextra

t .
For horizontally arranged solar panels, Etot

t equals the global irradiation at time t,
Eglo

t , which is the sum of the direct irradiation Edir
t and indirect or diffuse irradiation Edir

t .
Thereby, Edir

t can be calculated based on Eglo
t [24], and Edi f

t = Eglo
t − Edir

t consequently.
For tilted solar panels, we have to add reflected irradiation Ere f g

t . Additionally, Edir
t and

Edi f
t are slightly changed to direct and diffuse irradiation on the tilted ground, noted by

Edir,tilt
t , Edi f ,tilt

t [26]. We can compute direct, diffuse, and reflected irradiation on the tilted
ground using the Albedo alb(ΘZ

t ), which estimates how much irradiation is reflected from
a surface (see Equation (6)). According to Alboteanu et al. [27], the formulas read

Edir,tilt
t = Edir

t ·
cos Θt
cos ΘZ

t
,

Edi f ,tilt
t = Edi f

t · 1
2 · (1 + cos β),

Ere f ,tilt
t = Eglo

t ·
alb(ΘZ

t )
2 · (1− cos β).

(5)

The Albedo is exponentially increasing with a decreasing declination of the sun: the
higher ΘZ

t , the more light is reflected from the ground surrounding the panels. As it is
difficult to obtain a functional form for the Albedo, we have to use approximations. We
assume that the photovoltaic panels are mounted on roofs; hence, we assume an Albedo
of 20% if the sun’s declination is above a certain boundary [28]. Below this boundary, we
approximate the Albedo using a linear function alb(ΘZ

t ):

alb(ΘZ
t ) =

{
20%

100%− 8/3
(

90◦ −ΘZ
t

)
%
◦

i f ΘZ
t ≤ 60◦

else.
(6)

2.2. How to Incorporate Clouds into the Model

The model of Bird and Hulstrom [7] (assuming clear sky conditions) allows comput-
ing solar irradiation on horizontal surfaces with an accuracy of ±5%, while only basic
atmospheric data are required. However, cloudy days are a lot more challenging to model.
Myers [6] expands this model to the already mentioned CSM, where the relationship be-
tween irradiation under clear and under the cloudy sky is modeled via a multiplicative
transmittance factor. Here, we propose a slight modification of this idea. We introduce two
multiplicative factors, namely εglo and εglo,tilt, one for the global irradiation on the plain
ground (to compute the Albedo influence) and one for the global irradiation tilted ground.
The factors are used to establish a connection between extraterrestrial irradiation Eextra

t and
irradiation on the ground under tilted conditions at time t:

Eglo,clouds
t = Eextra

t · εglo,
Eglo,tilt,clouds

t = Eextra
t · εglo,tilt.

(7)
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Using Equation (7), we can replace the first two formulas in Equation (5). The reflected
irradiation under cloudy conditions, again, is computed using Eglo,clouds

t from Equation (7)
and the Albedo function (6) in Equation (5). Eventually, we yield Etot

t under cloudy condi-
tions as the sum of Eglo,tilt,clouds

t and Ere f ,tilt
t under cloudy conditions. Via Equations (1)–(3),

the power output PVt is eventually computed.

3. Modeling Temperature and Cloudiness

Given the model design above, a stochastic model for temperature, cloudiness, and
global (tilted) irradiation is needed to simulate solar power production scenarios. Temper-
ature is a significant driver, as it influences the solar panels’ efficiency. For this purpose,
literature offers various so-called weather generators, which are models (mostly with corre-
sponding software packages) that allow simulating different weather conditions [29]. As
an alternative, a Fourier transform-based model is proposed [30]. More advanced (multi-
variate) approaches have one thing in common [31–33]: They contain a term that explicitly
models the seasonal component. Most are autoregressive approaches, which is reasonable
as the temperature will not change too much from one hour to the next. In most cases, a
Gaussian distributed noise term is applied to include stochastic elements. The advantage
of the autoregressive models is evident: They are easy to understand and handle, which is
beneficial in practical application. Hence, we apply such a model to describe and simulate
air temperature Tempair

t . A sine function captures the trend. Using the Fourier transform
delivers slightly better results but adds complexity to the model. Moreover, it is usual to
compute the daily average temperature using a sine or cosine-based formula in business.
Accordingly, let St be the annual seasonality on an hourly basis defined as

St = a + b · sin
(

(t− c)2π

365.25 · 24

)
, (8)

where t denotes the hourly time index and a, b, c ∈ R are parameters to shift and scale the
seasonal trend. To consider leap years, we write 365.25 instead of 365. The discrete-time
hourly air temperature model itself is defined as

∆Tempair
t = κ1

(
St − Tempair

t
)
∆t + κ2

(
St−1 − Tempair

t−1
)
∆t

+κ3
(
St−24 − Tempair

t−24
)
∆t + σεt,

(9)

where κ1, κ2, κ3 ∈ R, εt ∼ N(0, 1), and σ > 0 denotes the volatility. If desired, one could

design volatility to be time-varying, i.e., σ is replaced by σt (for potential models, refer
to McNeil et al. [34]). The model itself is constructed to be mean-reverting around the
annual seasonality St, which is reasonable, as there might be warm and cold winters, but
the average temperature in December is lower than in July. Additionally, we have an
autoregression lag of 1 and 24. Lag 1 accounts that temperature usually is not significantly
changing from one hour to the other, and Lag 24 is the daily seasonality. This seasonality is
sometimes more robust and sometimes weaker (in case of temperature drops, for example),
but it is there. On average, it is warmer at noon than at midnight. The larger κ3, the larger
the effect of daily seasonality.

Cloudiness, again, is measured in Germany as discrete states between 0 (clear sky)
and 8 (a dense blanket of clouds). In other countries, it is recorded in the percentage of sky
covered. Cloud movement is very complicated to model, and as it is not the paper’s focus,
we use a rather hands-on, data-driven approach. As distribution for the cloudiness, we
propose using a conditional multinomial distribution conditional on the previous state to
account for autoregressive effects. The transition probabilities are estimated based on a
data set of measured cloudiness. Let c(t) ∈ C be the cloudiness at a specific hour and let
C = {c1, c2, . . . , ck}, k ∈ N denotes the set of possible states of cloudiness. The conditional
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probability pi,j = P(c(t) = ci
∣∣c(t− 1) = cj) of having a cloudiness level of c(t) = ci given

that the cloudiness of the previous hour was c(t− 1) = cj is estimated as follows

pi,j =
#days with cloudiness ci given cj on the previous day

#days where previous day had a cloudiness o f cj
. (10)

The result is a matrix of transition probabilities, making it very easy to simulate future
cloud coverages.

The transmittance factors εglo,clouds and εglo,tilt,clouds from Equation (7) are modeled as
linear functions depending on Tair

t , c(t), incident angle ΘZ
t , the current hour, and Eextra. A

seasonality parameter is also included. For each hour, we fit the model

yt = α0 + α1Tempair
t + α2c(t) + α3Eextra

t + α4

(
90◦ −ΘZ

t

)
+ seasont + γt (11)

using least squares estimation. Thereby, α0, α1, α2, α3, α4 ∈ R represent the linear coef-
ficients, γt ∼ N

(
0, σ2) the residuals, and yt is either ε

glo,clouds
t or ε

glo,tilt,clouds
t . More-

over, seasont = − cos(month(t) · 2 · pi/12), whereby month(t) denotes the current month
in numbers, i.e., March = 3. Note that we only obtain estimates for positive values of(

90◦ −ΘZ
t

)
, i.e., when the sun is above the horizon. For the calibration, historical values

are used to obtain Eglo,tilt,clouds
t via (7). As mentioned above, Eextra

t can be computed accord-
ing to Michalsky [24]. Mind that the parameter estimates of Equation (11) vary with β and
the azimuth choice. Hence, for each panel position, a new calibration is required.

4. Application to Real-World Solar Irradiation Data

For a summary of the simulation procedure, please refer to the flow chart in Figure A2
in Appendix A. Here—because it is the novel aspect of our model, and in order to keep the
article short—we solely discuss the irradiation model. Given proper irradiation simulations,
corresponding photovoltaic simulations can be derived as described in the flow chart
(Figure A2).

4.1. Data

We use the Climate Data Center provided by the German Climate Service www.dwd.de
(accessed on 1 February 2021) [35] for retrieving temperature and cloud coverage data.
Irradiation data come from the CAMS Radiation Service v3.2 all-sky irradiation provided
by MINES ParisTech, Paris, France. The acronym CAMS stands for Copernicus Atmosphere
Monitoring Service, which provides data at a resolution of about 3 km–max. 5 km [36]. All
data were accessed via www.soda-pro.com on 1 February 2021 [37]. An overview of the
data sets, including length and sources, is given in Table 1.

Table 1. Data sets (all accessed on 1 February 2021).

Data Set Source From/To Length

Temperature Ulm www.dwd.de [35] 1 January 2014–31 December 2018 37,924
Cloud Cover Ulm www.dwd.de [35] 1 January 2014–31 December 2018 37,381
Irradiation Ulm www.soda-pro.com [37] 1 January 2013–31 December 2018 52,584

In Figure 1, we exemplary plot one year (2018) of global solar radiation. We can see the
expected seasonal swing and some substantial variation, making prediction quite hard and
requiring the development of various scenarios to assess a financial investment influenced
by irradiation values.

The daily pattern can only be conjectured; hence, we plot the patterns in two sample
months in Figure 2. Now, the daily structure and the weather-related variation can be
observed. There is a distinct daily seasonality; its extent is not constant and influenced by
various weather phenomena. Figure 3, again, presents temperature and cloud cover data

www.dwd.de
www.soda-pro.com
www.dwd.de
www.dwd.de
www.soda-pro.com
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for 2018. The stochastic pattern of the cloud cover is observed. Temperature shows the
expected characteristic annual swing with a significant drop in the first quarter of 2018
and some significant variation over the year. There is also some daily seasonality, which is
not constant due to changing weather and events such as sudden temperature drops. A
stochastic model needs to incorporate all those observations.

Figure 1. Hourly global solar irradiation from Ulm 2018.

Figure 2. Hourly global solar irradiation from Ulm in May and October 2018.

4.2. Model Calibration and Results

We calibrate the model from Equation (9) to the above data using nonlinear least-
squares estimation to generate temperature simulations. This model includes both an
annual and a daily seasonality and allows for enough variation to simulate temperature
drops or unusually low or high temperatures. Again, transition probabilities for the cloud
coverage are computed using the available data sets according to Equation (10). For detailed
results, please refer to Table A1 in Appendix A. The transmittance coefficients are computed
using Equation (11) calibrated to the given data sets. Parameter estimates are given in
Tables A2 and A3 in Appendix A.

In Figure 4, we exemplarily plot modeled hourly irradiation data for 2018 compared to
the true values. It is not a simulated set but a descriptive model’s output. It shows that the
model captures the annual swing, and values are in the range of the historical observations.
On a first glimpse, our model looks a bit spikier. However, this might also be due to the
resolution. In Figure 5, we show the results for February (as a winter month) and July (as
a summer month) in detail. Note that values are computed for photovoltaic panels with
a 30◦ southward tilt. We can see that the relevant dynamics are captured in both months,
whereby our model produces a smoother version, which is due to the least-squares fitting
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of the model parameters in Equation (11). This is distinctly visible in the February data,
where the model generates a smoothed version of reality.

Figure 3. Hourly temperature and cloud cover data from Ulm in 2018.

Figure 4. Hourly irradiation data for 2018: our model vs. reality.



Sustainability 2022, 14, 4617 9 of 16

Figure 5. Real and simulated global tilted irradiation.

Differences in the summertime are comparably lower than differences in wintertime,
which is significant for assessing our model. In the summertime, irradiation values are
higher, so we have more resulting photovoltaic power. Smaller model errors mean that
simulations reflect better the true conditions in these months; hence, we can consider them
more reliable. Considering the February data, we see that we underestimate irradiation val-
ues on days with comparably intensive sunshine. This might be due to an underestimation
of reflexive irradiation due to snow, for example.

5. Quality Control and Discussion
5.1. Quality Control

For evaluating the quality of our model, we have to rely on assessing the irradiation
values due to the lack of accurate historic photovoltaic data. This case study’s central and
relevant findings can be summarized as follows: The annual errors’ average is approxi-
mately zero. Hence, the model is unbiased, and the annual sum of irradiation from the
model is roughly equal to the historical measurements. Even if the hourly estimates are
incorrect, the overall simulated irradiation is correct, and any financial analysis will not be
biased. However, in this section, we want to look at model errors to understand the model
better and know how to interpret and treat the resulting simulations.
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On a monthly level, relative differences between the modeled and true irradiation
amounts are maximum around plus/minus 8%, as shown in Figure 6. Consequently, given
unbiased temperature simulation, we slightly overestimate photovoltaic power amounts
in March and underestimate them in August. The rest of the months, especially May and
December, show comparably smaller relative differences.

Figure 6. Relative difference between modeled and measured irradiation amounts (plain ground) on
a monthly level for Ulm data between 2015 and 2018.

Eventually, we consider hourly data and compute (a) the relative standard errors
(RSE), i.e., the differences’ standard deviation divided by the respective hourly mean, as
well as (b) the median absolute percentage error (MAPE). The second measure is computed
by including values from the data set at a particular hour and month. For example, we
analyze the error for Hour 5 in January. The same is done for the MAPE. We compute errors
for irradiation on plain and on the tilted ground in order to see whether this has an effect
on the error levels.

Given a data set of T observations, it is defined for Eglo
t as

MAPE
((

Êglo
t

)
t=1,...,T

,
(

Eglo
t

)
t=1,...,T

, hour, month
)
=

1
T

J

∑
j=1

∣∣∣∣∣∣
Êglo

j − Eglo
j

Eglo
j

∣∣∣∣∣∣, (12)

Thereby, Êglo
j denotes the estimated irradiation value at time instance j, whereby only

values at a chosen hour and in a specific month are considered. Consequently, J denotes the
length of this subset. The MAPE for Eglo,tilt

t is computed analogously. Thereby, as above,
we assume a 30◦ southward tilt. We compute the median, not the mean, as the standard
definition of the MAPE implies. When looking at the errors’ distribution, we see a strong
asymmetry as it is tilted to the right. Hence, the median is better to estimate the average
absolute percentage error. Results for the average over hourly errors in monthly granularity
for Eglo

t and Eglo,tilt
t are given in Table 2.

The first thing we see is that errors indeed increase when considering Eglo,tilt instead
of Eglo. Additionally, we see that error measures are higher in the winter months than
during summer. This is because irradiation values are higher during summer. Hence, the
least squares optimization focuses more on those values than on the comparably lower
values in winter. RSE values range between 25% and about 39% for Eglo and between
24% and 50% for Eglo,tilt, whereby the highest values are observed between October and
February, where absolute values are lowest over the year. Average MAPE values for Eglo

range between 17% and 34% with the same annual pattern, i.e., showing higher values
during winter. MAPE values for Eglo,tilt are slightly higher, ranging between 18% and 43%.
Therefore, it is reasonable that both MAPE and RSE values are higher for Eglo,tilt due to
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the higher proportion of direct irradiation, which is more complex to model than diffuse
irradiation as it is more stochastic.

Table 2. Errors of estimating global (tilted) irradiation in Ulm.

Eglo

January February March April May June

RSE 37.82% 38.94% 29.71% 29.17% 27.97% 25.11%
MAPE 29.01% 30.78% 25.96% 22.27% 19.85% 17.74%

January February March April May June

RSE 25.66% 27.50% 29.65% 34.96% 38.74% 32.06%
MAPE 17.18% 17.86% 21.55% 29.48% 32.05% 33.55%

Eglo,tilt

January February March April May June

RSE 49.98% 47.76% 37.57% 27.50% 29.15% 24.19%
MAPE 37.44% 39.14% 31.12% 24.62% 23.07% 18.95%

January February March April May June

RSE 25.37% 27.49% 31.86% 43.92% 48.80% 49.33%
MAPE 17.74% 20.01% 25.14% 37.65% 43.23% 39.13%

In order to understand the error levels summarized in Table 2, we have a closer look
at the data. First, one has to consider that incidence angle, cloud coverage, temperature,
and a parameter for the annual seasonality can only partly explain irradiation. In Figure 7,
we plot irradiation versus cloud coverage. On the first day, the interdependencies are
obvious as high cloudiness induces comparably low irradiation. On 5 and 6 February,
global irradiation evolves constantly along with the daylight pattern, but cloudiness is
oscillating significantly. However, when fitting Equation (10), the respective parameter α2
is significant. One assumption is that hourly granularity already has too much aggregation
and that temporary sunny periods within an hour overcompensate the cloudy phases.
Additionally, global irradiation also considers indirect irradiation, which contributes to the
total value also in clouded phases. Above that, there might be other influence factors or
nonlinear interdependencies that have not been considered yet. However, the latter would
mean the reliance on even more data, where the current data sets are sometimes hard to
obtain. Working, for example, with 10-min data increases the amount of data by a factor 6.
Moreover, data quality on an hourly level is comparably higher.

Figure 7. Global irradiation vs. cloudiness on a horizontal plane from 4 to 6 September 2014 in Ulm.
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5.2. Discussion

For evaluating the potential of our model, we have to consider alternatives as well.
Note that literature exclusively focuses on horizontal values, which is reasonable as tilt
offers too much variety.

Politaki and Alouf’s model [14] is thereby the model closest to our approach. Their
model is based on the Clear Sky Model of Bird and Hulstrom [7], which is extended by
a multiplicative stochastic factor to (a) include cloudiness and (b) allow for simulating
irradiation values. However, it is hard to compare their model to ours regarding error
numbers, as they show only root mean squared errors, which are even aggregated to an
annual level. Given the strong seasonality of irradiation values, this information is only of
limited value. Additionally, there is one significant drawback: as it is based on the Clear
Sky Model, we require additional data such as pressure and aerosol depth. Especially
the latter is hard to obtain—even more if historical observations are required. Lockart
et al. [38] state that their simulation models achieve preciseness of 8%. However, they
consider daily values and ignore intraday patterns, which are the challenging part here.
Anand et al. [39] focus on the distributional properties. Trend and seasonal aspects are
captured via a symmetric moving average given historical observations and then filtered.
After that, first-order differences eliminate the last deterministic information. Simulation is
purely done via the distribution fitted to the residuals of the previously described process.
The advantage of their idea is that only historic irradiation values are required; however,
limiting the annual and daily swing to a fixed average value narrows the range of possible
scenarios significantly. Extraordinarily long/short summers or comparably cold/warm
winters cannot be modeled in their setup. As we simulate temperature separately, our
model accounts for different weather scenarios.

Benth et al. [9] use the sun intensity to identify and eliminate the seasonal component’s
influence. Afterward, they fit an autoregressive process, which can also be used for
simulation purposes. Here, no local but regionally aggregated data on a daily level are
used. Hence, this is also not an alternative to our approach.

These few examples illustrate that, despite a wide range of literature about this topic,
it is hard to compare individual models. These vary in granularity (hourly, daily) and
objective. However, we can state a few things. Compared to existing approaches which are
close to our model [6,7], we can significantly reduce the amount of climate data required
for calibration at the cost of reduced accuracy. One does not have to consider factors such
as water vapor, ozone level, aerosol optical depth, and air pressure. These influence factors
are all time-varying, and historical measurements (for model calibration purposes) are hard
to obtain. Our model is much more user-friendly, as it is easier to handle and calibrate.
Hourly error levels seem to be high at first sight. However, solar irradiation is a highly
complex physical parameter. Moreover, our intention is not to model but to simulate data.
Error values are also given to see whether numbers increase in the case of tilted irradiation.
More importantly, the model is unbiased on an annual level, and model bias on a monthly
level is relatively low.

6. Conclusions

Simulating photovoltaic power is required in the energy risk management of power
utilities, power plant operators, and energy trading companies. Because of the relevance
of this topic, literature already offers methods and tools to simulate photovoltaic power.
This article adds a new parametric model to simulate solar irradiation and, consequently,
photovoltaic power on an hourly level. Our approach is based on the idea that simulated
global irradiation values are scaled values of extraterrestrial irradiation. The (hourly)
scaling factors are obtained via linear functions that include factors such as temperature,
cloudiness, or maximum possible irradiation. An annual trend is included as well. In
order to derive corresponding solar power values, we integrate our approach into the
cloudy sky model designed by Myers [6]. Our results are positive: the simulated irradiation
pattern is similar to historical data. Additionally, we see no bias in the total solar power
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output compared to the previous years. We have a clear and straightforward approach that
includes the interdependencies between the individual weather factors. Hence, different
possible weather scenarios are covered, but no complex physical knowledge or considerable
computational power is needed. The application is therefore also suitable for optimizing
the operation of isolated photovoltaic grids.

However, from a modeling point of view, there is still some research to be done in the
future. Relative errors of solar irradiation models are relatively high compared to other
fields of application. Especially in the wintertime, our model lacks some precision. Future
research needs to verify whether nonlinear models should be considered as well or whether
other weather factors such as precipitation and aerosol density should be included.
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Appendix A

Figure A1. Parameter interactions.
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Figure A2. Flow chart of the proposed solar irradiation model.

Table A1. Cloud coverage transition matrix for Ulm, Germany.

From/To 0 1 2 3 4 5 6 7 8

0 68.93% 7.95% 4.70% 3.41% 2.78% 2.58% 2.45% 4.26% 2.94%
1 31.02% 12.98% 9.95% 7.90% 8.29% 7.51% 4.98% 9.27% 8.10%
2 18.11% 11.19% 12.31% 10.99% 8.95% 10.27% 7.53% 11.50% 9.16%
3 12.40% 7.66% 9.66% 9.66% 12.31% 11.58% 9.39% 16.13% 11.21%
4 8.62% 6.81% 7.80% 10.92% 12.56% 13.63% 12.64% 15.68% 11.33%
5 6.38% 4.77% 7.18% 9.09% 11.22% 12.46% 12.10% 20.09% 16.72%
6 4.36% 3.37% 6.20% 7.66% 9.64% 10.03% 13.14% 26.67% 18.94%
7 1.99% 1.82% 1.60% 2.73% 3.08% 4.14% 6.34% 32.27% 46.03%
8 0.58% 0.46% 0.47% 0.65% 0.80% 1.06% 1.38% 14.44% 80.16%
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Table A2. Parameters for estimating Eglo of Ulm.

Hour Intercept ct 90◦−Θz Eextra Tair Seasonality

6 0.8664 −0.0447 −0.1085 0.0041 0.0052 0.0565
7 0.9336 −0.0466 −0.1556 0.0061 0.0038 0.1519
8 1.1537 −0.0460 −0.0251 0.0002 0.0044 0.2764
9 1.1165 −0.0449 −0.0077 −0.0003 0.0061 0.2492

10 0.8488 −0.0423 −0.0356 0.0014 0.0060 0.1797
11 0.7877 −0.0377 −0.0230 0.0009 0.0083 0.1552
12 0.7460 −0.0325 −0.0197 0.0008 0.0082 0.1694
13 0.7132 −0.0306 −0.0154 0.0006 0.0078 0.1571
14 0.6043 −0.0285 −0.0189 0.0008 0.0071 0.1300
15 0.5085 −0.0232 −0.0219 0.0009 0.0062 0.1297
16 0.2547 −0.0184 −0.0654 0.0031 0.0042 0.1147
17 0.0964 −0.0134 −0.0141 0.0010 0.0020 0.0379
18 0.0256 −0.0084 −0.0180 0.0013 0.0008 0.0592
19 −0.0276 −0.0044 −0.0201 0.0015 −0.0005 0.0320

Table A3. Parameters for estimating Eglo,tilt of Ulm.

Hour Intercept ct 90◦−Θz Eextra Tair Seasonality

6 0.3930 0.0063 −0.2051 0.0089 −0.0011 −0.1730
7 0.8892 −0.0336 −0.0559 0.0017 0.0007 0.0954
8 0.9814 −0.0427 −0.0437 0.0013 0.0044 0.1819
9 1.0066 −0.0452 −0.0423 0.0014 0.0060 0.2181

10 0.7323 −0.0451 −0.0583 0.0027 0.0060 0.1548
11 0.7920 −0.0403 −0.0414 0.0018 0.0117 0.1808
12 0.9114 −0.0354 −0.0332 0.0012 0.0130 0.2369
13 0.9308 −0.0398 −0.0267 0.0009 0.0119 0.1983
14 0.8582 −0.0449 −0.0334 0.0013 0.0106 0.1491
15 0.6622 −0.0401 −0.0485 0.0021 0.0078 0.1243
16 0.2767 −0.0271 −0.1058 0.0050 0.0045 0.0870
17 0.1091 −0.0173 −0.1230 0.0058 0.0018 0.0498
18 0.01606 −0.0060 −0.0104 0.0009 0.0005 0.0273
19 −0.0280 0.0007 −0.0097 0.0009 −0.0007 0.0174
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1. Mitić, P.; Kostić, A.; Petrović, E.; Cvetanović, S. The Relationship between CO2 Emissions, Industry, Services and Gross Fixed

Capital Formation in the Balkan Countries. Eng. Econ. 2020, 31, 425–436. [CrossRef]
2. Li, D.; Yang, D. Does Non-Fossil Energy Usage Lower CO2 Emissions? Empirical Evidence from China. Sustainability 2016, 8, 874.

[CrossRef]
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