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Abstract: This study investigates the complexity, efficiency, and sectoral interdependen-
cies of the S&P Global BMI indices during critical global events, including the COVID-19
pandemic and the Russia–Ukraine war. The analysis is conducted in three dimensions:
(1) evaluating market efficiency using permutation entropy and the Fisher information
measure, (2) exploring sectoral alignments through clustering techniques (hierarchical and
k-means clustering), and (3) assessing the influence of geopolitical risk using Multifrac-
tal Detrended Cross-Correlation Analysis (MFDCCA). The results highlight significant
variations in informational efficiency across sectors, with Utilities and Consumer Staples
exhibiting high efficiency, while Emerging Markets and Financials reflect lower efficiency
levels. Temporal analysis reveals widespread efficiency declines during the pandemic,
followed by mixed recovery patterns during the Ukraine conflict. Clustering analysis
uncovers dynamic shifts in sectoral relationships, emphasizing the resilience of defensive
sectors and the unique behavior of Developed BMI throughout crises. MFDCCA further
demonstrates the multifractality in cross-correlations with geopolitical risk, with Consumer
Staples and Energy showing stable persistence and Information Technology exhibiting
sensitive complexity. These findings emphasize the adaptive nature of global markets in
response to systemic and geopolitical shocks, offering insights for risk management and
investment strategies.

Keywords: S&P Global BMI sectoral indices; price dynamics; efficient market
hypothesis; informational efficiency; clustering; MFDCCA; COVID-19; Russian–
Ukraine war; geopolitical risk

MSC: 37M10

1. Introduction
Financial markets are complex and dynamic systems shaped by a wide range of factors,

including economic conditions, geopolitical events, investor sentiment, and market struc-
tures [1–3]. Recent global crises, notably the COVID-19 pandemic and the Russia–Ukraine
war, have amplified market volatility, disrupted sectoral relationships, and triggered sig-
nificant behavioral shifts among investors [4,5]. Financial markets are increasingly influ-
enced by global crises, with significant implications for economic stability and investment
strategies. Understanding how sectoral efficiencies and interdependencies respond to
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geopolitical risks is crucial for improving risk management practices and maintaining
resilient financial systems.

Market efficiency, as posited by the Efficient Market Hypothesis (EMH), suggests that
asset prices fully reflect all available information, thereby implying that geopolitical risks
are rapidly incorporated into market valuations. However, the degree of efficiency can
vary across sectors due to their unique exposure and sensitivity to geopolitical events.
Sectoral interdependencies further complicate this relationship, as shocks in one sector can
propagate through supply chains, financial linkages, and investor sentiment, amplifying or
mitigating the overall impact of geopolitical risks. By integrating these theoretical frame-
works, this study aims to elucidate how market efficiency and sectoral interconnectedness
shape the transmission and pricing of geopolitical risk, offering a more structured and
comprehensive perspective on their interplay.

Prior studies have shown that stock indices exhibit heterogeneous behavior during
crises, with interdependency variations across markets and asset classes [6,7]. Defensive
sectors, such as Utilities and Consumer Staples, often display heightened resilience dur-
ing periods of market turbulence, while cyclical sectors, like Financials and Energy, are
more susceptible to systemic shocks [8,9]. Moreover, recent research highlights the intri-
cate relationship between geopolitical risk and financial market dynamics, emphasizing
the nonlinear interactions and cross-correlations across indices during crises [10]. Such
findings align with broader analyses that stress the adaptive nature of global markets in
response to systemic shocks [11,12]. For example, the onset of the COVID-19 pandemic
triggered widespread declines in efficiency across global stock markets, with financial
and consumer-oriented sectors experiencing pronounced disruptions due to heightened
volatility and shifts in investor behavior [13,14]. Similarly, the Russia–Ukraine conflict
introduced volatility, particularly within energy markets, highlighting the sensitivity of
certain sectors to geopolitical tensions [15–17].

The theoretical foundations of market behavior during crises emerge from three in-
terconnected domains. First, market efficiency theory suggests that markets’ capacity to
process information varies systematically across sectors and crisis types [11,12]. This varia-
tion manifests through differential efficiency patterns, with some sectors maintaining robust
information processing capabilities while others experience significant disruptions [13,14].
Second, sectoral interdependence theory examines how market relationships evolve dur-
ing crises, with evidence showing that sectoral connections intensify and reshape during
periods of stress [8–10]. Third, geopolitical risk transmission theory explains how political
tensions affect markets through both direct channels, such as trade disruptions, and indirect
channels, including investor sentiment shifts [15–17].

To examine these theoretical dimensions empirically, we employ three complementary
methodological approaches. Our efficiency analysis utilizes permutation entropy and
Fisher information measures [18,19], enabling precise quantification of how different sectors
maintain or lose efficiency during crises. Our investigation of sectoral relationships employs
advanced clustering techniques [19], revealing how market structures evolve under stress.
Our analysis of geopolitical risk transmission uses multifractal methods [20], capturing the
complex, scale-dependent nature of risk propagation.

We examine these dynamics using the S&P Global BMI sectoral indices, which offer
a comprehensive framework for analyzing global equity market performance across dis-
tinct economic sectors. Derived from the S&P Global Broad Market Index (BMI)—which
encompasses over 14,000 constituents from both developed and emerging markets—these
indices are classified according to the Global Industry Classification Standard (GICS) [21].
The GICS structure includes 11 sectors: Communication Services, Consumer Discretionary,
Consumer Staples, Energy, Financials, Health Care, Industrials, Information Technology,
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Materials, Real Estate, and Utilities. This classification provides a robust foundation for
sector-specific benchmarking and facilitates nuanced analysis of global market trends [22].
In addition to the 11 main sectors, this study incorporates indices such as the S&P Devel-
oped BMI, S&P Emerging BMI, S&P Global BMI Gold, and S&P Global BMI, which are
essential for capturing regional market variations, sector-specific trends, and broader global
market performance [23].

This paper makes three key contributions. First, we demonstrate significant variations
in sectoral efficiencies, showing that Utilities and Consumer Staples consistently exhibit
higher efficiency, while Emerging Markets and Financials reflect lower efficiency levels.
Consumer Staples experienced efficiency declines during the COVID-19 pandemic, while
Utilities and Communication Services showed recovery during the Russia–Ukraine conflict,
highlighting sector-specific adaptability. Second, we uncover dynamic shifts in sectoral
relationships, emphasizing the resilience of defensive sectors and the unique adaptability
of Developed BMI indices during systemic shocks. Clustering analysis reveals the distinct
positioning of Developed BMI as a global benchmark and the formation of resilient clus-
ters dominated by essential sectors during crises. Third, we highlight the multifaceted
influence of geopolitical risk on market dynamics, with evidence of stable persistence
in the Consumer Staples and Energy sectors, contrasted by heightened complexity in
Information Technology. Sectors such as Communication Services and Energy demon-
strated pronounced sensitivity to large-scale geopolitical shocks, emphasizing the need for
adaptive risk management strategies.

The remainder of this paper is structured as follows: Section 2 outlines the methodol-
ogy employed in the analysis, and Section 3 summarizes the data used. Section 4 presents
and discusses the results, including clustering patterns, market efficiency dynamics, and
the relationship with geopolitical risk. Finally, Sections 5 and 6 provide discussion and
conclude the study, summarizing key findings and providing insights for risk management
and investment strategies.

2. Materials and Methods
Before detailing specific methodological approaches, we establish how our analytical

framework operationalizes the theoretical constructs discussed in the Introduction. Our
methodology examines market behavior through three complementary approaches, each
addressing a distinct aspect of financial market dynamics during crisis periods. The first
approach employs information-theoretical measures to quantify market efficiency. These
measures assess how effectively markets incorporate new information, testing the adap-
tive market efficiency hypothesis during periods of stress. The second approach utilizes
clustering techniques to reveal evolving sectoral relationships during market stress. This
analysis maps changing interdependencies and their implications for portfolio diversifica-
tion strategies. While hierarchical clustering reveals nested structures without imposing
strict assumptions about cluster shapes, k-means clustering identifies distinct market seg-
ments through variance minimization. The third approach applies MFDCCA to capture
the complex, scale-dependent nature of geopolitical risk transmission. This step reveals the
multifractal nature of cross-correlations, uncovering how geopolitical risk influences the
persistence, complexity, and fluctuations of financial indices across different time periods.

This integrated framework examines the S&P Global BMI sectoral indices across three
critical periods: pre-COVID-19, during COVID-19, and during the Russia–Ukraine war.
The inclusion of the Geopolitical Risk (GPR) index enables assessment of how geopolitical
uncertainties shape market dynamics. By combining these complementary methods, we
capture both linear and nonlinear relationships, as well as time-varying dynamics across
different scales.
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2.1. Complexity and Efficiency Measures

Following the approach given by [18–20,24], we first explore the interplay be-
tween entropy (disorder), predictability, and informational efficiency using three pri-
mary components: permutation entropy, the Fisher information measure, and a sliding
window approach.

Permutation entropy is employed to quantify the level of complexity or randomness
within a time series. This approach identifies ordinal patterns inherent in the data by
mapping symbolic sequences to specific data segments. Using these sequences, a probability
distribution function is constructed to evaluate the complexity of the series [18,19,24]. For a
time series of length Q, overlapping segments of length d, Zq =

(
zq, zq+1, . . . , zq+d−1

)
are

analyzed, with the sequence ranking based on ascending values. The measure computes
the permutation entropy as H(d) = −∑π πlogp(π) , where p(π) denotes the probability
of each permutation [24]. Following standard practice, the embedding dimension d is
selected to ensure statistical robustness, typically adhering to n>5d! [24]. Then, we utilized
the Fisher information measure (FIM) to quantify the degree of order or indeterminacy
within the system. This metric reveals insight into the system’s disorder and provides
a measure of the information extractable from the data [25,26]. The discrete normalized
form of FIM, expressed as F[P] = F0∑N

i=1
( √

pi+1 −
√

pi
)2, where pi and pi+1 represent

consecutive probabilities from P and F_0 is a normalization constant, is applied to evaluate
the system’s characteristics [19].

To perform a time-dependent analysis of PE and FIM, we applied the sliding win-
dow technique [19]. This method involves constructing a sequence of overlapping win-
dows from the original time series x1, x2, . . . , xN . Specifically, the sliding windows
ktx1+t∆, . . . , ktxw+t∆ are generated for t = 0, 1, . . . ,

[
N−w

∆

]
, where w is the window size,

∆ is the sliding step, and [] represents the integer part of a value. For each window, the
corresponding permutation entropy and FIM values are calculated. This process enables
the analysis of the dynamic behavior of the time series, capturing the temporal evolution of
its complexity and informational efficiency. The permutation entropy and FIM are then
mapped onto a Shannon–Fisher causality plane (SFCP), providing a comprehensive view
of the dynamics. The results are further visualized through their trajectory in the SFCP,
providing insights into changes in the system’s dynamics over time.

Compared to traditional market efficiency measures like variance ratios or autocor-
relation tests widely used in financial practice, PE and FIM can better detect nonlinear
patterns in market behavior. However, these information-theoretic measures may be more
computationally intensive than standard linear approaches.

2.2. Clustering Analysis

The second methodological step is to perform cluster analysis to identify patterns
and similarities within the S&P Global BMI sectoral indices. Two primary approaches are
employed—k-means clustering [27] and hierarchical clustering [28]. The k-means algorithm
distributes data points into k clusters, where the centroid of each cluster is iteratively
recalculated to optimize the grouping. The algorithm assigns each data point to the
nearest cluster based on minimized distances, repeating the process until the convergence
criteria are met. The optimal number of clusters, k, is determined using the elbow method,
which evaluates the variance within clusters to identify the point of diminishing returns
in increasing k [29]. Complementary to k-means, hierarchical clustering examines the
inherent similarity patterns in the dataset. This method calculates pairwise dissimilarities
between data points, constructing a hierarchical tree or dendrogram representing nested
groupings. Each data point is initially treated as an individual cluster, and pairs of clusters
are merged iteratively based on the least dissimilarity, creating a hierarchy. This iterative
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process continues until all data points are combined into a single cluster. The resultant
dendrogram is analyzed to determine the most significant clusters, ensuring they align
with observed patterns. These clustering methods are applied to the normalized data [19],
comprehensively analyzing behavioral similarities across the dataset.

The selection of both hierarchical and k-means clustering methods is motivated by their
complementary analytical strengths in capturing market relationships. Rather than claiming
superiority over a single-method technique, we use both methods to provide different
perspectives on sectoral relationships during crisis periods. While hierarchical clustering
reveals nested structures of sectoral relationships without imposing strict assumptions
about cluster shapes, k-means clustering offers advantages in identifying distinct market
segments through variance minimization. Data normalization using z-score standardization
prevents scale differences from biasing clustering outcomes.

2.3. Multifractal Detrended Cross-Correlation Analysis (MFDCCA)

Finally, the study includes the GPR index to capture the influence of geopolitical
events on market volatility and sectoral interdependencies. We employ the Multifractal
Detrended Cross-Correlation Analysis (MFDCCA) method to investigate multifractal prop-
erties between two non-stationary time series, see [30]. The steps in MFDCCA include the
following.

The inputs for the analysis are two time series, x and y, of the same length N.

Step 1. Profile Construction

For two given time series, the respective profiles are created by integrating deviations
from their mean values:

X(t) =
t

∑
i=1

(x(i)− x), Y(t) =
t

∑
i=1

(y(i)− y),

where x and y represent the mean of each series and where t = 1, . . . N.

Step 2. Segmentation

Both profiles are divided into Ns = [N/s] non-overlapping segments of equal length
s, where s is the scale parameter. To maximize data usage, segmentation is performed from
both ends of the time series.

Step 3. Detrending

For each segment, local trends are calculated using a least-squares polynomial fit. The
detrended profiles are then determined by subtracting the local trends from the data in
each segment.

Step 4. Cross-Covariance Calculation

The detrended covariance for each segment is computed as follows:

F2(s, v) =
1
s ∑s

i=1 [X(v − 1)s + i)−
∼
Xv(i)][Y(v − 1)s + i)−

∼
Yv(i)],

where
∼
Xv(i) and

∼
Yv(i) are the polynomial fits for the respective segments.

Step 5. Fluctuation Function Calculation

The fluctuation function, averaged across all segments, is calculated for a range of
orders q:

Fq(s) = [
1

2Ns

2Ns

∑
v=1

(F 2(s, v)
) q

2
]

1/q

.
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For q = 0, logarithmic averaging is used:

Fq(s) = exp[
1

2Ns

2Ns

∑
v=1

lnF2(s, v) ].

Then, we estimate the generalized Hurst exponent hxy(q) through the MFDCCA
process, as outlined in Steps 1–5. Specifically, the fluctuation function is calculated for
a range of scales s and orders q. The relationship between the fluctuation function Fq(s)
and the scale s is examined on a log–log plot. The generalized Hurst exponent hxy(q) is
estimated as the slope of the relationship Fq(s) ∝ shxy(q). The generalized Hurst exponent
hxy(q) is a key component of MFDCCA and is used to characterize the scaling behavior and
multifractality of cross-correlations between two time series. Unlike the traditional Hurst
exponent, which is often associated with fractional Brownian motion and measures the
long-range dependence or autocorrelation structure of a single time series, the generalized
Hurst exponent captures the multifractal nature of cross-correlations across different scales.
In this study, we use it to analyze how the cross-correlations between the GPR index and
the S&P Global BMI sectoral indices vary with the scale of fluctuations, providing insights
into the multifractal dynamics of these relationships.

A larger range of α and significant variations in hxy(q) indicate strong multifractality
and complexity in the cross-correlations between the two time series. Persistent cross-
correlations (hxy(2) > 0.5) suggest a positive relationship, while anti-persistent behavior
(hxy(2) < 0. 5) reflects a negative relationship. The degree of multifractality is determined
by calculating the range of hxy(2), where a larger ∆H = hxy(qmin)− hxy(qmax) indicates a
more pronounced multifractal characteristic. Using the generalized Hurst exponent, the
multifractal mass exponent τ(q) is calculated:

τ(q) = qhxy(q)− 1.

The singularity strength, αxy, represents the degree of singularity for each segment
within a complex system, while the singularity spectrum, fxy(α), describes the fractal di-
mension corresponding to αxy. These measures are calculated using the following relation:

αxy = hxy(q) + qh′xy(q),

where h′xy(q) is the derivative of hxy(q) with respect to q. The singularity spectrum f (α),
which describes the fractal dimensions of subsets, is obtained as f

(
αxy

)
= qαxy − τ(q).

The range of the singularity strength, W = αxy,max − αxy,min, quantifies the degree
of multifractality. A larger W indicates stronger multifractal properties, reflecting more
intense fluctuations within the system. The multifractal spectrum f

(
αxy

)
is quantitatively

characterized by key parameters that describe its width and asymmetry. The skew parame-
ter r = αxy,max−α0

αxy,min−α0
evaluates the asymmetry of the spectrum, where α0 is the overall Hurst

exponent. A symmetric spectrum corresponds to r = 1, a right-skewed spectrum to r > 1
(dominated by small fluctuations), and a left-skewed spectrum to r < 1 (dominated by
large fluctuations). The parameters W, α0, and r are integral in assessing complexity. A
more complex time series is characterized by a higher α0, a broader spectrum width W,
and a right-skewed shape (r > 1). In contrast, a narrower W, lower α0, and left-skewed
shape (r < 1) suggest reduced complexity. These measures provide a robust framework for
evaluating the intricate dynamics and persistence of multifractal systems.

Compared to traditional bivariate analysis methods, MFDCCA combines the multi-
fractal spectrum analysis with cross-correlation capabilities, allowing it to capture complex
relationships between two time series across multiple scales. This method is particularly
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powerful for analyzing financial markets as it can simultaneously examine scaling het-
erogeneity and interdependence between series, revealing how market relationships vary
across different time scales. While MFDCCA effectively characterizes the multifractal na-
ture of cross-correlations, it cannot determine the directional causality in the relationships
between the analyzed series.

In summary, our methodological framework combines three complementary ap-
proaches that offer several advantages over traditional methods. The permutation en-
tropy and Fisher information measures can detect both linear and nonlinear patterns in
market behavior, extending beyond conventional efficiency measures like variance ratios
that primarily capture linear dependencies. The dual clustering approach provides richer
insights into market structures compared to single-method clustering, though it requires
assumptions about cluster shapes and distances. The MFDCCA framework captures scale-
dependent relationships between markets and geopolitical risk, offering deeper insights
than standard correlation analysis, while requiring larger datasets for reliable estimation.
While alternative approaches such as wavelet analysis or dynamic copulas could provide
different perspectives, our chosen methods balance analytical depth with interpretability,
particularly important when examining market behavior during crisis periods.

3. Data
This study analyzes the daily closing prices of 15 S&P Global BMI sectoral indices,

sourced from the S&P Dow Jones Indices, a division of S&P Global (www.spglobal.com/
spdji, accessed on 17 October 2024), from 30 September 2014 to 16 October 2024, encompass-
ing 3664 observations. It examines three key periods—pre-crisis (before 24 February 2020),
the COVID-19 pandemic (24 February 2020–31 December 2021), and the period following
its resolution, which overlaps with the ongoing Russia–Ukraine war (from 24 February
2022 onward)—to assess how global crises impact sectoral efficiency and resilience.

The indices represent a diverse range of sectors, including Developed Markets (A),
Emerging Markets (B), Communication Services (C), Consumer Discretionary (D), Con-
sumer Staples (E), Energy (F), Financials (G), Gold (H), Health Care (I), Industrials (J),
Information Technology (L), Materials (M), Real Estate (N), Utilities (O), and Global (P).
The analysis period encompasses major global events, including the COVID-19 pandemic
and the Russia–Ukraine War, allowing for the exploration of how extreme shocks impact
market efficiency and sectoral behavior.

The S&P Global BMI index structure means some companies are represented in both
sectoral- and market-level indices. This does not weaken the analysis; rather, it provides a
more complete view of market behavior. Sectoral indices highlight industry-specific trends,
while developed and emerging market indices reflect differences in market structure and
risk exposure. Including both shows how different market segments interact and respond
to crises, offering deeper insight into sectoral resilience and overall market dynamics.

The descriptive statistics reveal several key patterns in the S&P Global BMI sector
returns. Table 1 provides descriptive statistics of the returns, including the mean, standard
deviation, skewness, and kurtosis for each sector. The mean daily returns across sectors
range from 0.00080% to 0.00288%, with Information Technology (L) showing the highest
mean return and Emerging BMI (B) the lowest. All sectors exhibit positive skewness,
indicating a tendency toward positive returns, with Real Estate (N) showing the most
pronounced right-skewed distribution. The kurtosis values are consistently high across all
sectors (ranging from 3.57 to 27.94), with Real Estate (N) displaying the highest kurtosis,
suggesting frequent extreme returns and heavy-tailed distributions. The standard devi-
ations vary from 0.003034 to 0.008295, with Gold (H) showing the highest volatility and
Consumer Staples (E) the lowest, reflecting different levels of risk across sectors.

www.spglobal.com/spdji
www.spglobal.com/spdji
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The time series of daily closing prices for the S&P Global BMI sectoral indices, pre-
sented in Figure 1, illustrates the overall trends and variability across sectors from 2014
to 2024. Additionally, the histograms in Figure 2 provide a detailed distribution of these
prices, highlighting the statistical characteristics and frequency of values for each index.
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Figure 1. Time series of daily closing prices for S&P Global BMI sectoral indices (2014–2024). 
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Figure 1. Time series of daily closing prices for S&P Global BMI sectoral indices (2014–2024).
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Table 1. Descriptive statistics of the returns.

Full Name Code Mean Std Skew Kurtosis

S&P Developed BMI (USD) TR A 0.000160 0.004065 1.127797 17.52093
S&P Emerging BMI (USD) TR B 0.000080 0.004085 0.729691 6.020300
S&P Global BMI Communication Services (Sector) (USD) TR C 0.000094 0.004371 0.626321 7.745967
S&P Global BMI Consumer Discretionary (Sector) (USD) TR D 0.000141 0.004569 0.798816 10.25059
S&P Global BMI Consumer Staples (Sector) (USD) TR E 0.000104 0.003034 1.125845 17.33405
S&P Global BMI Energy (Sector) (USD) NTR F 0.000035 0.006641 1.256515 20.62600
S&P Global BMI Financials (Sector) (USD) TR G 0.000139 0.004513 1.247199 18.96267
S&P Global BMI Gold (Sub-Industry) (USD) TR H 0.000139 0.008295 0.101432 3.575750
S&P Global BMI Health Care (Sector) (USD) TR I 0.000138 0.003827 0.614947 9.621013
S&P Global BMI Industrials (Sector) (USD) TR J 0.000150 0.004118 0.917478 15.35427
S&P Global BMI Information Technology (Sector) (USD) TR L 0.000288 0.005403 0.582073 8.870027
S&P Global BMI Materials (Sector) (USD) TR M 0.000112 0.004441 0.736366 10.44718
S&P Global BMI Real Estate (Sector) (USD) TR N 0.000081 0.004101 1.709118 27.94521
S&P Global BMI Utilities (Sector) (USD) TR O 0.000125 0.003869 1.022855 22.40082
S&P Global BMI (USD) TR P 0.000152 0.003916 1.193422 17.41700

4. Results
We applied the Bandt and Pompe method [31] to compute PE and FIM, following

the approach as in [32]. Using these measures, we constructed the SFCP plane to assess
the level of disorder and randomness in the daily closing prices of 15 S&P Global BMI
sectoral indices. The SFCP enables visualization of market efficiency by positioning each
index based on its PE and FIM values. Additionally, we analyzed the behavior dynamics of
shuffled time series as a benchmark, employing 1000 × N transpositions for each series.

Figure 3 and Table 2 together provide a detailed analysis of the informational efficiency
of the 15 S&P Global BMI indices, leveraging their representation on the SFCP and associ-
ated metrics. Figure 3 illustrates the SFCP, representing the interplay between randomness
and predictability for the 15 S&P Global BMI sectoral indices. Table 1 supplements this
with numerical data for the entropy, FIM, informational efficiency (IE), distance to the ideal
position (Dist. (1,0)), and a ranking based on proximity to the random ideal position (PE = 1,
FIM = 0). The ideal position represents a theoretical benchmark representing maximum
entropy, minimal predictability, and complete informational efficiency. Entropy reflects the
degree of randomness or disorder in the time series, with higher values indicating greater
randomness. The FIM quantifies predictability, where lower values suggest greater disorder.
IE combines these measures to assess the overall efficiency of the index, with higher values
reflecting closer alignment to efficient market behavior. Each point in Figure 3 corresponds
to a specific index, with PE on the horizontal axis and FIM on the vertical axis. The red
dots indicate the random ideal position. The indices’ relative positions to the random
ideal point reveal differences in market behavior. Smaller distances from the ideal position
signify higher efficiency, as seen for S&P Global BMI Utilities (O) and Consumer Staples
(E). These indices exhibit high entropy and low FIM, placing them close to the random
ideal position in the SFCP and suggesting they behave in a manner similar to efficient
markets with minimal exploitable patterns. In contrast, indices such as S&P Emerging BMI
(B) and S&P Global BMI Financials (G) are farther from the ideal position. These indices
have lower entropy and higher FIM, indicating less disorder and greater predictability,
characteristics typically associated with lower market efficiency. The ranking column in
Table 1 provides a summary of efficiency levels across the indices and aligns closely with
the distances, emphasizing the efficiency hierarchy across sectors. For instance, Utilities (O)
is ranked first, followed by Consumer Staples (E), while Emerging BMI (B) and Financials
(G) are ranked lowest in terms of efficiency.
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Figure 3. Shannon–Fisher causality plane for S&P Global BMI sectoral indices.

Table 2. Informational efficiency metrics for S&P Global BMI indices.

Full Name Entropy FIM IE Dist. (1,0) Ranking

S&P Global BMI Utilities (Sector) (USD) TR 0.883 0.073 0.810 0.138 1
S&P Global BMI Consumer Staples (Sector) (USD) TR 0.880 0.070 0.810 0.139 2
S&P Global BMI Energy (Sector) (USD) NTR 0.875 0.070 0.805 0.144 3
S&P Global BMI Gold (Sub-Industry) (USD) TR 0.872 0.072 0.801 0.146 4
S&P Global BMI Health Care (Sector) (USD) TR 0.872 0.073 0.799 0.148 5
S&P Global BMI Communication Services (Sector) (USD) TR 0.871 0.074 0.797 0.149 6
S&P Global BMI Real Estate (Sector) (USD) TR 0.870 0.075 0.796 0.150 7
S&P Developed BMI (USD) TR 0.872 0.079 0.793 0.150 8
S&P Global BMI Industrials (Sector) (USD) TR 0.869 0.076 0.793 0.151 9
S&P Global BMI Consumer Discretionary (Sector) (USD) TR 0.867 0.076 0.791 0.153 10
S&P Global BMI Information Technology (Sector) (USD) TR 0.860 0.076 0.784 0.160 11
S&P Global BMI (USD) TR 0.864 0.082 0.782 0.159 12
S&P Global BMI Materials (Sector) (USD) TR 0.860 0.078 0.781 0.161 13
S&P Global BMI Financials (Sector) (USD) TR 0.862 0.082 0.779 0.161 14
S&P Emerging BMI (USD) TR 0.861 0.087 0.774 0.164 15

Now, we further elaborate on the IE index. The degree of IE is computed as the differ-
ence between PE and FIM, IE = PE−FIM, as in [22]. This index combines the randomness
and informational structure of the system, offering insight into its efficiency. Specifically,
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this index is interpolated within the range of [−1,1], where IE = 1 represents entirely ran-
dom and efficient behavior (i.e., PE = 1, FIM = 0), and IE = −1 corresponds to completely
regular and inefficient dynamics (PE = 0, FIM = 1). Intermediate values capture varying
degrees of efficiency. The analysis examines the dynamics of IE for these assets across three
distinct periods: before COVID-19, during COVID-19, and during the Russia–Ukraine war.

Figure 4 illustrates the evolution of the informational efficiency index for each of these
periods, providing insights into how these significant global events influenced market
efficiency. Additionally, Table 3 presents the percentage differences between the selected
periods, calculated using sliding windows of size w = 120 days (6 months) and a sliding
step of ∆ = 21 days (1 month), offering a quantitative summary of the percentage changes
in IE between these periods.

Table 3. Percentage values of differences between the selected periods.

Full Name Before
COVID-19

During
COVID-19

Russia–Ukraine
War

S&P Developed BMI (USD) TR - −0.84% 3.18%
S&P Emerging BMI (USD) TR - −3.71% 10.40%
S&P Global BMI (USD) TR - −2.47% 2.69%
S&P Global BMI Communication Services (Sector) (USD) TR - −2.84% 2.60%
S&P Global BMI Consumer Discretionary (Sector) (USD) TR - −7.99% 13.35%
S&P Global BMI Consumer Staples (Sector) (USD) TR - −4.26% 2.32%
S&P Global BMI Energy (Sector) (USD) NTR - 1.43% −6.39%
S&P Global BMI Financials (Sector) (USD) TR - 3.73% −6.88%
S&P Global BMI Gold (Sub-Industry) (USD) TR - −2.59% −2.56%
S&P Global BMI Health Care (Sector) (USD) TR - 1.48% −1.21%
S&P Global BMI Industrials (Sector) (USD) TR - 1.94% −4.82%
S&P Global BMI Information Technology (Sector) (USD) TR - 0.41% 1.46%
S&P Global BMI Materials (Sector) (USD) TR - 2.35% −1.46%
S&P Global BMI Real Estate (Sector) (USD) TR - 0.33% 1.63%
S&P Global BMI Utilities (Sector) (USD) TR - −2.73% 0.36%

During the COVID-19 pandemic, a marked decline in efficiency was observed for
most indices. Sectors such as Consumer Discretionary and Consumer Staples experienced
the largest reductions in IE, with percentage declines of −7.99% and −4.26%, respectively.
These results highlight the heightened disorder and reduced predictability in these sectors
due to the pandemic’s unprecedented impact on consumer behavior and supply chains.
However, Financials (+3.73%) and Materials (+2.35%) exhibited resilience, reflecting their
critical importance during COVID-19. These results highlight the capacity of these sec-
tors to maintain or enhance functionality during periods of significant uncertainty. The
Russia–Ukraine War introduced further variability in informational efficiency. Sectors such
as Utilities (+0.36%) and Communication Services (+2.60%) demonstrated a recovery in
efficiency levels, indicating their ability to adapt to the geopolitical turmoil. In contrast,
sectors like Energy (6.39%) and Financials (−6.88%) faced continued inefficiencies, likely
driven by increased market volatility and economic uncertainty associated with the conflict.
The temporal evolution of IE highlights the differing capacities of sectors to absorb and
adapt to systemic shocks. Before the COVID-19 pandemic, the indices generally main-
tained stable and relatively higher levels of informational efficiency, reflecting a less volatile
market environment. The transition to the pandemic period disrupted this stability, with
widespread declines in efficiency, particularly in sectors heavily affected by the global
health crisis. The subsequent Russia–Ukraine conflict further intensified these dynamics
for some sectors while providing opportunities for others to regain stability.
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The temporal evolution further reveals sophisticated sector-specific adaptation mecha-
nisms. Essential services sectors maintained relatively stable efficiency metrics throughout
the analytical period, suggesting robust information processing capabilities even under
stress conditions. Conversely, cyclical sectors demonstrated sensitivity to the transition
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from pandemic-induced market stress to geopolitical tensions. This sectoral divergence
in efficiency dynamics carries important implications for portfolio management and risk
assessment strategies during periods of compound systemic stress. Particularly noteworthy
is the temporal persistence of efficiency patterns within defensive sectors. Despite ini-
tial pandemic-related disruptions, Utilities and Consumer Staples demonstrated superior
efficiency recovery characteristics, maintaining their positions at the upper end of the
efficiency spectrum. This resilience suggests inherent structural advantages in information
processing capabilities within these sectors, potentially related to their fundamental role
in economic stability and relatively predictable demand patterns. The observed temporal
progression emphasizes that sectoral responses to systemic shocks are neither uniform
nor linear, but rather exhibit complex patterns of deterioration, adaptation, and recovery
that vary significantly across market segments and temporal phases. This heterogeneity
in efficiency dynamics underscores the importance of sector-specific approaches to risk
management and investment strategies during periods of market stress.

The clustering analysis examines the relationships between the S&P BMI indices
under varying economic and geopolitical conditions across three periods, pre-COVID-19,
during COVID-19, and the Russia–Ukraine conflict, but also across the overall considered
time period.

The hierarchical clustering analysis (Figure 5) reveals two primary clusters in the
pre-COVID-19 period. The first, comprising Communication Services, Information Technol-
ogy, Gold, Consumer Discretionary, and Financials, reflects speculative and growth-driven
dynamics. The second cluster includes all the remaining indices highlighting stable, defen-
sive sectors. During COVID-19, Developed BMI formed a distinct cluster, indicating its
unique market behavior, while a cohesive purple cluster emerged, comprising Communi-
cation Services, Energy, Financials, and Information Technology. The remaining indices
are grouped into a blue cluster, emphasizing essential and resilient sectors responding to
pandemic-driven volatility. The Ukraine war period saw Developed BMI remain distinct,
while Consumer Staples, Health Care, Industrials, Real Estate, Utilities, Emerging BMI, and
Materials formed a cohesive red cluster, reflecting stronger interconnections. Communica-
tion Services, Consumer Discretionary, Energy, Information Technology, Financials, and
Gold are aligned in a blue cluster, demonstrating their behavior under war-induced con-
ditions. Over the entire period, Developed BMI consistently stood apart, while persistent
interdependencies emerged in a purple cluster (Energy, Financials, Gold, Communication
Services, and Information Technology) and a blue cluster (Consumer Staples, Real Estate,
Emerging BMI, Health Care, Consumer Discretionary, Industrials, Materials, and Utilities).

Similarly, the k-means clustering analysis (Figure 6) highlights significant shifts in
grouping patterns across the same periods. Pre-COVID-19, two clusters were evident:
one comprising Developed, Emerging, Health Care, Real Estate, and Consumer Staples,
characterized by stability and alignment with essential needs and established markets,
and another driven by speculative dynamics, including all the remaining indices. During
COVID-19, clustering revealed three distinct groups. Information Technology, Communica-
tion Services, Gold, Financials, and Energy formed one cluster, reflecting their sensitivity
to pandemic trends such as technology reliance and gold’s safe-haven role. Essential and
traditional sectors, including remaining indices, formed the second cluster. Developed
BMI emerged as a distinct third cluster, highlighting its unique behavior during the pan-
demic. The Ukraine war period introduced further shifts, while keeping Developed BMI
in a distinct cluster. Consumer Discretionary joined the cluster containing Information
Technology, Gold, Energy, Financials, and Communication Services, reflecting strengthened
interconnections. The remaining indices consolidated into a distinct cluster, emphasizing
resilience. Over the entire period, Developed BMI remained separate, while Information



Mathematics 2025, 13, 641 15 of 26

Technology aligned with Consumer Discretionary, Financials, Gold, Communication Ser-
vices, and Energy. A third cluster of Emerging BMI, Real Estate, Health Care, Consumer
Staples, Industrials, Materials, and Utilities reflected their shared stability and resilience to
market shocks.
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The stability of the clustering solution was carefully evaluated using 100 bootstrap
iterations. In each iteration, the clustering algorithm was reapplied to a resampled dataset,
and the resulting cluster labels were compared to those from the original clustering solution
using the Adjusted Rand Index (ARI). The ARI measures the agreement between two
partitions, ranging from −1 (indicating worse-than-random agreement) to 1 (indicating
perfect agreement). In this context, ARI values above 0.6 are considered indicative of robust
and stable clusters, reflecting a high level of consistency in the clustering structure despite
data variability. For details, see Table 4.
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Table 4. Bootstrap and ARI test.

Clusters Pre-COVID-19 During
COVID-19

During Russia–Ukraine
War All Periods

1 0.684 0.604 0.7 0.684

2 0.804 0.805 0.933 0.852

3 0.725 0.935 0.859
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Finally, the MFDCCA was employed to investigate the cross-correlations between the
Geopolitical Risk index and various S&P BMI sectoral indices during the considered three
periods and the entire analysis period. MFDCCA was applied to the logarithmic returns,
calculated as rt = logPt − logPt−1, with Pt representing the closing price index at time t.
This transformation aligns with standard financial practice and ensures proper analysis of
relative price changes across different market conditions. We have calculated and applied
the coefficient of determination (R2) to all MFDCCA graphs involving method-generated
points in the dataset.

The log–log plots of Fq(s) versus s clearly demonstrated power-law scaling across all
periods, confirming the presence of long-range cross-correlations (Figure 7).
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Additionally, we calculate α with q from the range −10 to 10 to obtain the multifrac-
tality quantitatively for each of the S&P BMI sectoral indices and the GPR index (Figure 8).

The cross-correlation generalized Hurst exponents hxy(q) for the whole considered
period presented in Table 5 provide insight into the multifractal interactions between
the Geopolitical Risk (GPR) index and 15 S&P Global BMI indices. For most indices,
hxy(q) declines as q increases, demonstrating stronger multifractal correlations for larger
fluctuations (negative q) compared to smaller fluctuations (positive q). This behavior is
consistent with the presence of multifractality in the interactions between the GPR and
the indices. Among the indices, Consumer Staples

(
hxy(q = −10) = 0.457

)
and Industrials
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(hxy(q = −10) = 0.452) exhibit the highest correlations for large fluctuations, indicating a
stronger response to geopolitical risk under extreme conditions. In contrast, indices such as
Communication Services

(
hxy(q = −10) = 0.390

)
and Materials

(
hxy(q = −10) = 0.396

)
display lower correlations, suggesting less sensitivity to GPR in the context of large-scale
fluctuations. These findings highlight the varying degrees of resilience and vulnerability of
different sectors to geopolitical risk across multiple scales of market dynamics.
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The multifractal spectrum analysis further supported these findings (Figure 9). The
pre-COVID-19 period exhibited narrower spectra, reflecting a more uniform and stable
market environment. The spectra during the COVID-19 pandemic and the Ukraine war
were characterized by negative skewness, suggesting the dominance of small fluctuations
in cross-correlation dynamics during these crises. Table 6 presents the multifractal statistics
for the cross-correlation between the GPR index and 15 S&P Global BMI indices. The table
includes three key parameters: α0 (representing persistence), W (width of the multifrac-
tal spectrum, indicating complexity), and r (relative dominance of large fluctuations in
multifractality). The α0 values across the indices are consistently below 0.5, indicating
antipersistence in the cross-correlation between the GPR index and the S&P indices. This
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suggests that, on average, the correlations do not exhibit long-term persistence but in-
stead reflect alternating dynamics over time. Consumer Staples (α0 = 0.366) and Energy
(α0 = 0.356) exhibit relatively higher persistence compared to other indices, indicating their
more stable relationships with geopolitical risks. The W values, reflecting the width of the
multifractal spectrum, capture the complexity of the cross-correlation. Higher W values
indicate greater heterogeneity and a wider range of fluctuations. Information Technology
(W = 0.423) and Consumer Staples (W = 0.397) demonstrate the highest complexity,
suggesting that these indices experience diverse and pronounced reactions to geopolitical
risk. Conversely, Communication Services (W = 0.205) and Energy (W = 0.244) display
the lowest complexity, indicating less diverse responses to geopolitical fluctuations. The
r parameter highlights the influence of large fluctuations on multifractality, with higher
values suggesting dominance by significant changes in the series. Communication Services
(r = 1.217) and Energy (r = 1.115) show the strongest influence of large fluctuations,
suggesting that these sectors are particularly sensitive to major geopolitical events. On the
other hand, Industrials (r = 0.537) and Gold (r = 0.567) exhibit lower r values, reflecting
relatively less sensitivity to extreme events. In summary, the table underscores the diverse
responses of the S&P BMI indices to geopolitical risk. Consumer Staples and Informa-
tion Technology stand out for their higher complexity, while Energy and Communication
Services are more reactive to large fluctuations.

Table 5. Cross-correlation generalized Hurst exponents to order q values.

GRP vs. −10 −8 −6 −4 −2 0 2 4 6 8 10

S&P Developed BMI 0.420 0.407 0.391 0.374 0.360 0.349 0.339 0.320 0.293 0.268 0.249

S&P Emerging BMI 0.412 0.401 0.387 0.372 0.358 0.345 0.335 0.326 0.317 0.307 0.297

S&P Global BMI Communication Services 0.390 0.379 0.366 0.352 0.338 0.325 0.313 0.299 0.282 0.263 0.247

S&P Global BMI Consumer Discretionary 0.429 0.414 0.397 0.379 0.362 0.350 0.338 0.321 0.297 0.273 0.255

S&P Global BMI Consumer Staples 0.457 0.442 0.425 0.406 0.386 0.366 0.344 0.314 0.276 0.244 0.220

S&P Global BMI Energy 0.427 0.414 0.399 0.383 0.367 0.354 0.342 0.331 0.317 0.303 0.291

S&P Global BMI Financials 0.417 0.406 0.394 0.380 0.366 0.352 0.340 0.324 0.304 0.284 0.269

S&P Global BMI Information Technology 0.411 0.400 0.388 0.375 0.360 0.344 0.324 0.301 0.276 0.252 0.232

S&P Global BMI Gold 0.427 0.414 0.399 0.382 0.365 0.348 0.327 0.297 0.261 0.231 0.210

S&P Global BMI Health Care 0.400 0.392 0.382 0.372 0.362 0.355 0.347 0.332 0.309 0.288 0.270

S&P Global BMI Industrials 0.452 0.434 0.411 0.386 0.363 0.346 0.329 0.303 0.267 0.234 0.208

S&P Global BMI Materials 0.396 0.388 0.378 0.368 0.357 0.347 0.337 0.324 0.306 0.287 0.271

S&P Global BMI Real Estate 0.399 0.388 0.378 0.369 0.362 0.356 0.344 0.317 0.281 0.253 0.234

S&P Global BMI Utilities 0.413 0.402 0.389 0.374 0.359 0.343 0.322 0.286 0.239 0.202 0.178

S&P Global BMI 0.409 0.399 0.386 0.371 0.359 0.350 0.341 0.323 0.297 0.273 0.255
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Table 6. Multifractal statistics.

GPR vs. α0 W r

S&P Developed BMI 0.348 0.306 0.712

S&P Emerging BMI 0.348 0.205 1.217

S&P Global BMI Communication Services 0.327 0.261 0.744

S&P Global BMI Consumer Discretionary 0.350 0.314 0.804

S&P Global BMI Consumer Staples 0.366 0.397 0.635

S&P Global BMI Energy 0.356 0.244 1.115

S&P Global BMI Financials 0.354 0.261 0.732

S&P Global BMI Gold 0.344 0.307 0.567

S&P Global BMI Health Care 0.347 0.360 0.589

S&P Global BMI Industrials 0.354 0.240 0.537
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Table 6. Cont.

GPR vs. α0 W r

S&P Global BMI Information Technology 0.346 0.423 0.752

S&P Global BMI Materials 0.348 0.230 0.593

S&P Global BMI Real Estate 0.349 0.288 0.488

S&P Global BMI Utilities 0.341 0.383 0.470

S&P Global BMI 0.349 0.277 0.620

5. Discussion
The discussion on the market efficiency remains a central topic in economic and fi-

nancial theory, with profound implications for investors, regulators, and the economy as
a whole. An efficient market, as defined by Fama [33] in his Efficient Market Hypothesis
(EMH), is one in which asset prices fully reflect all available information. In this context,
market efficiency can be seen as a mechanism for wealth preservation, as it reduces un-
certainty and excessive volatility, enabling investors to make more informed and secure
decisions. Moreover, efficient markets tend to be more resilient to external shocks, such
as inflation, since prices adjust rapidly to new information, preserving the real value of
assets over time [34]. On the other hand, inefficient markets, while potentially offering
opportunities for opportunistic investors, such as traders seeking to exploit information
asymmetries or price discrepancies, also pose significant risks. Inefficiency can lead to
uncontrolled volatility, increasing the likelihood of substantial capital losses for less in-
formed investors or those with limited risk management capabilities. This dynamic can
create an environment where some participants benefit at the expense of others, leading to
imbalances that may deter more conservative or institutional investors concerned with risk
ratings and portfolio stability.

This study does not aim to discuss or challenge the EMH, which has been extensively
explored and validated in various contexts [33,35]. Instead, it seeks to open space for
reflections on the nuances and complexities of markets, recognizing that efficiency is not a
binary state but a spectrum that varies depending on the context, asset type, and macroe-
conomic conditions. In this sense, this study leaves important questions open for future
research, such as identifying optimal levels of efficiency that balance return opportunities
with market stability, or how different types of investors can adapt to environments with
varying degrees of efficiency.

There are studies challenging the EHM, showing that market efficiency varies,
especially during crises when liquidity issues, volatility, and behavioral biases affect
prices [34,35]. These disruptions often lead to inefficiencies, influenced by structural factors
that shape how markets absorb shocks. While market efficiency varies across countries,
institutional and economic sectoral differences [36] also emerge, with some industries prov-
ing more resilient than others [11]. Empirical research supports that Utilities and Consumer
Staples tend to maintain efficiency due to their inelastic demand, as these sectors provide
essential goods and services that remain stable even in volatile markets [1,8]. In contrast,
the Financials sector exhibited significant inefficiencies during crises, as evidenced by
increased multifractality and stronger return correlations during the COVID-19 pandemic
compared to the GFC, indicating reduced market efficiency [37].

While prior studies primarily focus on single-crisis market dynamics, they of-
ten analyze regional markets or broader economic trends rather than global efficiency
across multiple crises. Most works examine either COVID-19’s impact on market
behavior [13,38–40] or the financial implications of geopolitical risks such as the Russia–
Ukraine conflict [15,16,41,42]. This study builds on these findings by comparing sectoral effi-
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ciency during both crises, revealing how industry resilience varies depending on crisis type
and duration. The results confirm Utilities and Consumer Staples as efficiency-preserving
sectors, while also highlighting differences in cyclical sector recoveries post-COVID-19
versus during ongoing geopolitical uncertainty.

Sectoral efficiency has direct investment strategy implications, particularly in sectoral
rotation models, where investors adjust portfolios based on relative market efficiency and
risk levels [43–45]. In times of crisis, investors may favor defensive sectors such as Con-
sumer Staples and Utilities, as they retain efficiency and exhibit lower volatility, making
them a potential choice for investors seeking safe-haven assets [46–48]. In contrast, cyclical
sectors—such as Financials [45] and Energy—often experience heightened inefficiencies,
leading investors to reallocate capital toward more resilient sectors [49]. The clustering re-
sults in this study reinforce these findings, revealing persistent linkages between defensive
sectors and greater dispersion in cyclical sector responses.

Measuring market efficiency requires advanced statistical tools that capture long-term
dependencies and nonlinear relationships. The Hurst exponent, introduced in fractal mar-
ket theory [50], has been widely applied in financial research to assess persistence in market
behavior [51]. Recent work by Nedeltchev and Zaevski [52] applies fractional Brownian
motion and the Hurst exponent to study volatility behavior during crises, including COVID-
19, highlighting how market turbulence alters volatility structure. However, the Hurst
approach does not fully capture cross-sector dependencies or nonlinear relationships in
crisis periods. This study extends prior research by integrating MFDCCA, which allows for
a more detailed assessment of efficiency shifts across multiple crises [30]. Unlike traditional
methods, MFDCCA identifies hidden dependencies between sectors, providing a broader
perspective on market efficiency dynamics under stress.

Beyond efficiency analysis, financial risk measurement has also evolved, with tradi-
tional Value at Risk (VaR) models criticized for underestimating tail risks during extreme
market events [53,54]. Conditional Value at Risk (CVaR) improves downside risk esti-
mation [55], while newer models, such as Entropic VaR (EVaR) [56] and expectile-based
risk measure [57], offer more adaptive and asymmetric risk assessments. Zaevski and
Nedeltchev (2023) [58] further highlight VaR’s limitations, advocating for expectile-based
risk measures as a more effective alternative. Alongside these advances, other method-
ologies, such as Spectral Risk Measures (SRMs) [59], provide an alternative framework
that assigns different weights to extreme losses, improving risk sensitivity under crisis
conditions. However, SRMs have faced criticism regarding their dependence on the choice
of utility functions, which determine how risk aversion is incorporated into the model [60].
Despite these concerns, SRMs remain a valuable approach for capturing tail risks, espe-
cially when calibrated carefully for specific market conditions. While this study focuses
on efficiency dynamics and clustering analysis, these evolving risk measures present an
opportunity for future research to integrate entropy-based risk models into multifractal
efficiency frameworks to better capture sectoral resilience in financial crises.

The presented analysis highlights the role of efficiency in market stability, showing
that certain sectors, such as Utilities and Consumer Staples, maintain efficiency even during
crises. This stability is often seen as beneficial, reducing volatility and supporting long-
term investment. However, market efficiency is not always universally positive. Some
inefficiencies stem from barriers that restrict participation, while others create opportunities
for excess returns and encourage active investment. In contrast, highly efficient sectors
provide stability but may limit profit potential. Market efficiency should be viewed in
context, considering its effects on stability, liquidity, and investment incentives.

In summary, while market efficiency is generally associated with benefits such as
wealth preservation and protection against factors like inflation, inefficiency may, in certain
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cases, create opportunities for some investors, albeit at the cost of increasing systemic
risks and imbalances. This study does not propose new theses that challenge widely ac-
cepted theories but rather discusses the vast range of possibilities that markets can present,
encouraging future research to explore these nuances in greater depth. This study adds
to the broader discussion on market efficiency, investment strategies, and risk modeling
by examining how sectoral efficiency changes across different crises. The findings rein-
force existing literature on sectoral resilience, validate clustering-based efficiency analysis,
and suggest that integrating entropy-based risk measures could enhance future financial
stability assessments.

6. Conclusions
This study evaluates market efficiency using multifractal measures, analyzing global

financial indices during significant economic events, including the COVID-19 pandemic
and the Russia–Ukraine war. The findings of this research provide actionable insights for
various stakeholders, including institutional investors, policymakers, financial regulators,
and academics. By examining sectoral responses to these crises, this study highlights both
vulnerabilities and opportunities within the global financial system due to their roles in
maintaining systemic stability and influencing market behavior, which may benefit most
from these results.

Institutional investors, including asset managers, pension funds, and hedge funds,
and other investors with actively managed portfolios, may navigate systemic shocks more
effectively by using this study. Institutional investor portfolios could prioritize defensive
sectors, such as Utilities and Consumer Staples, before a crisis to establish a stable core
allocation and reduce volatility. Reducing exposure to vulnerable sectors, such as Financials,
and using clustering insights to identify emerging resilient groups can help ensure the
portfolio remains adaptable. Post-crisis, incrementally reintroducing cyclical and growth-
sensitive sectors, supported by multifractal analysis to evaluate residual risks, may optimize
recovery and long-term stability.

Policymakers and financial regulators can use these findings to support key sectors
based on their resilience during crises. Utilities and Consumer Staples, which ensure
economic continuity, should be supported with capital access, regulatory frameworks,
and operational stability during crises. Financials, which showed vulnerabilities, requires
enhanced liquidity buffers and stronger risk management frameworks to withstand shocks.
It is recommended that policymakers develop early-warning systems for identifying sec-
toral vulnerabilities and implement preemptive fiscal measures, such as targeted liquidity
measures, to mitigate potential shocks before they escalate. Meanwhile, Healthcare and
Communication Services, which adapted well during crises, should receive targeted sup-
port, including emergency funding, to strengthen their crisis response capabilities. Technol-
ogy and energy sectors, with varying resilience, need adaptive crisis-specific policies to
ensure long-term stability and preparedness for future shocks. In particular, policymakers
should implement adaptive regulatory frameworks to help the Energy sector transition
to sustainable practices while ensuring the Technology sector remains robust enough to
handle increased demand and mitigate risks from emerging technologies like AI.

As discussed earlier, efficiency can contribute to market stability, but it is not uni-
versally beneficial. While some inefficiencies result from structural barriers, others create
opportunities for investors without necessarily increasing market instability. This study
reaffirms that sectoral efficiency and resilience depend on broader market conditions, re-
inforcing the need to assess efficiency in context rather than as an absolute measure of
market quality.
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To address these findings comprehensively, it is essential to consider the broader
implications of overlapping crises and the systemic risks they present. The interplay of
overlapping crises, such as geopolitical conflict overlapping with health- or climate-related
shocks, demands integrated approaches that account for cumulative impacts on financial
systems. Coordinating efforts across sectors and borders will be necessary to mitigate
cascading risks and ensure resilience.

Future research should build on these findings to explore sectoral resilience across
varying crises, such as climate-related events, global and localized economic shocks, health-
related disruptions, conflicts and political crises. Examining regional differences could
provide a more nuanced understanding of how different geographies influence sectoral
interdependencies. Expanding the temporal scope to analyze both long-term structural
changes and short-term shocks would further clarify the dynamics of sectoral resilience.
Additionally, incorporating new indicators, such as sustainability performance metrics, eco-
nomic policy uncertainty metrics, and macroeconomic variables could provide additional
insights into the internal and external drivers of resilience. Finally, extending the scope to
consider systemic risks, such as technological disruptions, cyberattacks, and demographic
shifts, would enhance understanding of vulnerabilities and adaptive capacities across
sectors. Future research could explore the underlying drivers of sectoral efficiency and
resilience, as well as the potential trade-offs between efficiency, stability, and investment
opportunities. This would provide a more comprehensive understanding of the complex
interplay between market efficiency and sectoral dynamics during periods of crisis.
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