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Abstract

This study focuses on the challenges of aviation

maintenance technician (AMT) scheduling and

constructs a model based on personnel satisfaction

and the parallel execution of aircraft maintenance

tasks. To obtain the scheduling scheme from the

constructed NP‐hard model, an interactive multi‐
swarm bacterial foraging optimization (IMSBFO)

algorithm is proposed using multi‐swarm coevolu-

tion, structural recombination, and three informa-

tion interactive mechanisms among individuals.

Moreover, considering the distributed feature of the

AMT scheduling problem, a specific mechanism is

designed to convert continuous solution to a binary

AMT scheduling scheme. Finally, a series of com-

parative experiments highlight the efficiency and

superiority of our proposed IMSBFO algorithm, and

the optimal scheduling scheme owns the delicate

balance between the work and rest time.
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1 | INTRODUCTION

Considering the advancement of the aviation industry, the improvement of fleet size and major
airlines stimulates an increasing demand for aircraft maintenance, repair, and overhaul
(MRO).1 Owing to the high proportion of maintenance cost in the aviation industry, most
airlines adopt the outsourcing MRO service from aircraft maintenance companies to reduce
cost and ensure the safety level of aircrafts. In 2012, the proportion of outsourcing business has
reached 45%, which is an increase of 20% compared with that of the mid‐1990s.2 In addition to
cost control, personnel satisfaction of maintenance technicians, with the great influence on
service quality and company's reputation, has become a key issue for improvement in a
company's soft power.

According to statistics, satisfying requirements, such as flexible work arrangements, fair-
ness, and reasonable shifts, and personnel preferences can often stimulate the staff and improve
work quality.3 Existing literature on airline employee scheduling problem, especially on crew
pairing problem (CPP) and crew rostering problem (CRP), often has impact factors, such as
cost, personnel preference, and fairness.4–8 Compared with the crew, aviation maintenance
technicians (AMTs) are often under greater work pressure, higher work intensity, and harsher
working conditions.9 However, only a few scholars pay attention to the AMT scheduling
problem. Qin et al.1 considered maintenance technician scheduling and constructed a total cost
function using the labor cost. Chen et al.3 focused on the fairness of the workload distribution
of maintenance technicians while considering the labor cost. Empirically, very few studies
consider personnel satisfaction on the AMTs scheduling problem. Moreover, to simplify the
mathematical model of the AMT scheduling problem, Qin et al.1 and Chen et al.3 assumed that
the maintenance tasks of all aircrafts in the hangar have been prearranged, and the model is
designed from three dimensions, including shift, task, and technician. Nevertheless, practically,
each aircraft waiting to be repaired owns a corresponding work card. When all aircraft
maintenance tasks are executed in parallel, it is necessary to match all maintenance technicians
and aircrafts according to the work card. Hence, in this study, we consider the aircraft as a
separate dimension to obtain a more practical maintenance technician scheduling scheme
based on personnel satisfaction.

AMT scheduling is a distributed and challenging NP‐hard problem. It is difficult to provide
an efficient AMT scheduling scheme using mathematical methods, especially for a large‐scale
condition. However, heuristic algorithms are suitable for complex NP‐hard problems.1,3,7–13 For
example, Chen et al.3 took the minimization of labor cost and maximization of workload
allocation fairness as the optimization objectives and used tabu search techniques to obtain the
optimal solution for the aircraft maintenance technician allocation problem. Deveci et al.10

used the genetic algorithm (GA) with hill climbing to solve the simple CPP.
Compared with widespread heuristic algorithms, such as GA,14–17 particle swarm optimization

(PSO),18–20 and ant colony optimization (ACO),21–23 bacterial foraging optimization (BFO),24–26 as a
new swarm intelligence algorithm, has shown great potential in solving complex global
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optimization problems. Previous studies on the improvement of BFO mainly focused on the
combination of hybrid algorithms,27 parameter adjustment,28 operation modification,29 and in-
formation interaction.30,31 However, the aforementioned studies are based on single bacterial
swarm and often stuck in a limited searching scope and dimension disaster.32,33 Considering these
problems, the multi‐swarm strategy has been successfully utilized in some previous studies. Chen
et al.32 extended the single swarm BFO to the multi‐swarm model, which emphasized the com-
munication among multiple bacterial populations and increased the diversity of the algorithm.
Chatzis and Koukas33 combined the swarming dynamics of PSO using BFO and used different
swarms to optimize designated components of the solution vectors with a better convergence
performance.

On the basis of the above discussions, this study focuses on the AMT scheduling problem
with outsource strategy. The interactive multi‐swarm bacterial foraging optimization (IMSBFO)
algorithm is proposed, and the application of heuristic algorithm is expanded to task–techni-
cian assignment problem. The contributions of this study mainly focus on three aspects.

• First, we creatively measure the satisfaction of AMTs using work preference, working
overtime, continuous participation in shifts, and fairness concern. These are acceptable and
applicable to both aircraft maintenance companies and AMTs.

• Second, we analyze the AMT scheduling problem from four dimensions: aircraft, shift, task,
and technician and design a concrete and novel AMT scheduling model, considering both
manpower cost and work satisfaction. Moreover, based on the parallel and one‐to‐one
characteristics of the constructed model, a highly cohesive task–technician coding scheme is
created.

• Third, we propose the IMSBFO algorithm for solving the AMT scheduling problem. The
IMSBFO algorithm is designed by modifying the nested relationship among chemotaxis,
reproduction, and elimination/dispersal operations in the BFO and enriching the
approaches of information interaction among individuals, including the multi‐swarm
coevolution, structural recombination, mutual aid and information interactive me-
chanism between biological swarms, and the mutual aid and competition mechanism
within a swarm.

The rest of the paper is structured as follows: Section 2 details the problem of AMT sche-
duling and explains the relevant variables; Section 3 provides sufficient details of the proposed
IMSBFO algorithm. In Section 4, the coding mechanism and how to apply the proposed al-
gorithm to solve the model are illustrated. Section 5 presents the computational results based
on the comparative experiments conducted. Finally, the conclusion and our future study are
outlined in Section 6.

2 | PROBLEM DESCRIPTION AND FORMULATION

We visited Guangzhou Baiyun International Airport, China Southern Airlines, and Shenzhen
Airlines to understand the actual demand for AMTs and interview their senior managers.
According to the interviews, this section introduces the constructed assignment model in three
steps. First, the AMT scheduling problem is described, and the related variables are defined.
Thereafter, the objective function is proposed based on personnel satisfaction. Finally, the
constraints are given with detailed explanations.
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2.1 | Problem descriptions

In most aircraft maintenance companies, aircrafts parked need to go through a series of
maintenance works. Each maintenance work has a work card listing detailed tasks. The work
card is compiled by the maintenance company according to the aircraft manufacturer's
documents and maintenance requirements of a specific aircraft. All the maintenance tasks are
carried out chronologically and neither must be skipped or missed. According to Chen et al.'s,3

the maintenance tasks that need to be completed by more than one technician are divided into
several subtasks using a sequence relationship, and a technician can complete only one sub-
task. Moreover, each maintenance technician has a license level, each maintenance task holds
specific requirements for the license level of the maintenance technician, and it takes different
times for each maintenance technician to complete different maintenance tasks. For instance,
considering the same task, some technicians may need 7 or 8 h, whereas others only need 2 or
3 h. Maintenance technicians with higher level licenses tend to have higher wages.

There are two kinds of AMTs: route maintenance and regular maintenance technicians. Route
maintenance technicians are mainly responsible for routine inspection before and after flight
maintenance procedures and troubleshooting after landing every night. This study is one of the
most arduous during maintenance procedures, with long working hours, high error probability, and
high pressure. Regular maintenance technicians are mainly responsible for regular large‐scale in‐
depth inspection of aircrafts, which is divided into A, C, D categories and other categories. In this
study, we mainly focus on the scheduling problem of route maintenance technicians. To meet the
operational needs and improve the utilization of the aircrafts, aircraft maintenance work con-
tinuously for 24 h. Therefore, AMTs usually adopt a shift working system, where 1 day is divided
into three shifts, namely, morning, middle, and night shifts (each of which is about 8 h).

To clearly express the mathematical model of the AMT scheduling problem, we list the
parameters and variables involved in the model in Tables 1 and 2.

2.2 | Objective function

Considering the characteristics of the maintenance tasks, working overtime or even working on
weekends is quite common and AMTs are often under great pressure. Moreover, part of the
maintenance work is carried out outdoors in a noisy environment. To stimulate the AMTs and
guarantee maintenance quality, the fairness of workload distribution and task preference of
AMTs are of great concern.

However, few studies consider both manpower cost and personnel satisfaction in the AMT
scheduling problem. In this section, in view of the real demands of AMTs, we present the
created optimization objective of aircraft maintenance companies with personnel satisfaction.
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TABLE 1 Definition of parameters

Variables Meaning of parameters

A Set of aircrafts waiting for maintenance services within a considered time period

M Set of AMTs waiting to be assigned maintenance tasks

T Set of shifts throughout the whole maintenance period

Sit Set of tasks of aircraft i during shift t

S Set of tasks waiting to be maintained

Q Set of license level of technicians

θm Cost of technician m per shift

τmt is, Preference cost of technician m to task s of aircraft i during shift t

lmt is, Time required for technician m to finish task s of aircraft i during shift t

avg Average working time of M technicians in the whole maintenance period

CSNm Number of times technician m works in two consecutive shifts throughout the whole
maintenance period

dit Scheduled delivery time of aircraft i in shift t

hm Working time of technician m stipulated in the labor contract

PDis Preorder tasks of task s on aircraft i

emq Technician m with license q

mqs Task s can be assigned to technicians with license q

TABLE 2 Definition of the binary variables

Variables Meaning of variables

zmt is, 1, if technician m is assigned to task s of aircraft i during shift t

0, otherwise

am 1, if technician m is available

0, otherwise

yist 1, if task s of aircraft i can be performed during shift t

0, otherwise

fis′ 1, if task s' of aircraft i is complicated

0, otherwise

sit 1, if maintenance service of aircraft i during shift t does not start

0, otherwise

overworkm 1, if technician m works overtime

0, otherwise

fit 1, if maintenance service of aircraft i during shift t is complicated

0, otherwise
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From the perspective of aircraft maintenance company, the optimization objective of this
study consists of manpower cost Cmp, work delay cost Cwd, and personnel work satisfaction
cost Cps as shown in (1). Weightinessi refers to the cost weightiness of aircraft i, and

∈penalty k( {1, 2, 3, 4, 5})k is the coefficient of the corresponding cost.
The manpower costCmp, which represents the cost of all the AMTs calculated based on each

shift during the maintenance cycle, is obtained by formula (2). If the tasks in a shift cannot be
completed on time, it is likely that the maintenance work cannot be delivered on time, making
the aircraft maintenance company bear the cost of work delay. Formula (3) illustrates the
formulation of work delay cost Cwd, representing the cost of timeout, where the completion
time of all the tasks exceeds the specified end time of the shift. The function of personnel work
satisfaction cost Cpws is presented in formula (4). This includes work preference cost Cwp,
working overtime cost Cwo, continuous shifts cost Ccs, and fairness concern cost Cfc. Each
maintenance technician has a different preference for each maintenance task. We divide the
work preference of each technician into different levels, and calculate the work preference cost
Cwp according to the specific preference τmt is, of all the AMTs using formula (5). Moreover,
according to the interview with the AMTs, frequent overtime and continuous work are the key
reasons for tired feelings and impaired concentration. Therefore, working overtime cost Cwo
and continuous shifts costCcs are included in the total cost. In this study, working overtime cost
Cwo is determined by the sum of working overtime in (6), and continuous shifts cost Ccs, which
is presented by the total number of times where the AMTs participate in two consecutive shifts
in (7). Furthermore, fairness of maintenance time allocation considerably affects personnel
satisfaction. Formula (8) utilizes fairness concern cost Cfc to describe this phenomenon.

2.3 | Constraints

After receiving aircraft maintenance orders, aircraft maintenance companies often need to
allocate maintenance technicians reasonably according to the current arrangement of the
maintenance technicians and specific situation of the aircraft maintenance tasks. In most cases,
one aircraft maintenance cycle is composed of several consecutive shifts. One shift lasts for 8 h,
and one working day includes three consecutive shifts. When assigning the AMTs, a series of
constraints are supposed to be satisfied, including the constraints that require orderly execution
of the maintenance tasks. The constraints restrict technician allocation in line with practical
significance and are used to ensure that the maintenance work is completed on time.
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First, the maintenance tasks on each aircraft are conducted in sequence. In Shift t, Task s,
and its subsequent maintenance tasks can be performed only when all the presequence
maintenance tasks PDis on Aircraft i have been completed. The above relationships are defined
in formula (9), where yist indicates whether Task s on Aircraft i in Shift t can be conducted, and
fis′ represents whether the tasks before Task s on Aircraft i has been completed.
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∈

y
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f i A s S t T
1

| |
, , , .ist

is s PD
is it

′
′

is

(9)

Second, technicians will not be assigned to aircrafts that have not yet submitted main-
tenance requests and that have indicated that all maintenance tasks have been completed. We
restrict the above two situations using (10), where sit measures whether the first task of Aircraft
i has been started, and fit refers to whether all maintenance tasks of Aircraft i have been
completed.

≤ ∀ ∈ ∀ ∈ ∀ ∈
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1 − , , , ,

1 − , , , .
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ist it it
(10)

Moreover, (11) and (12) demonstrate whether a technician can be assigned to a particular
task. Formula (11) indicates that the technicians can only be assigned to maintenance tasks
that are allowed to be conducted, and (12) defines that only technicians in idle conditions can
be assigned maintenance tasks. zmt is, denotes whether Technician m is assigned to complete
Task s on Aircraft i in Shift t and am represents the availability of Technician m.

≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈z y i A t T m M s S, , , , ,mt is ist it, (11)

≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈z a i A t T m M s S, , , , .mt is m it, (12)

To ensure that all maintenance tasks of each aircraft can be completed before the delivery time,
we define formula (13). This demonstrates that in Shift t, the completion time of all tasks on
Aircraft i cannot exceed the specified end time of the shift. lmt is, indicates time required for
Technicianm to finish Task s of Aircraft i during Shift t, and dt is the scheduled end time of Shift t.

⋅ ≤ ∀ ∈ ∀ ∈
∈ ∈

  z l d i A t T, , .
m M s S

mt is mt is t, ,

it

(13)

In addition, AMTs have different levels of maintenance licenses. When assigning techni-
cians to aircraft maintenance tasks, each maintenance task has specific requirements for the
level of maintenance license. Only a maintenance technician with a license level higher than or
equal to the required level is qualified to claim the maintenance task. Formula (14) shows that
when assigning technicians, the license level of Technician m shall not be lower than the
license level required by Task s on Aircraft i. emq refers to Technicianm with License q, andmqs

indicates that Task s can be assigned to technicians with License q. We assume that each
subtask is completed by only one maintenance technician in (15).

≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈z e m i A t T m M s S q Q, , , , , ,mt is mq qs it, (14)
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Finally, to ensure that the AMTs have sufficient rest time, the work time allocation of the
technicians needs reasonable scheduling. In general, a technician cannot participate in the
maintenance work of consecutive shifts, to ensure work efficiency.1 Additionally, the total
working time of Technician m shall not exceed the time hm stipulated in the labor contract.
Formulas (16) and (17) define the continuous shifts constraint and working overtime con-
straint, respectively.

⋅ ∀ ∈ ∀ ∈ ∀ ∈
∈ ∈

 z z i A t T m M= 0, , , ,
s S

mt is

s S

m t is, ( +1),

it it

(16)

⋅ ≤ ∀ ∈
∈ ∈ ∈

   z l h m M, .
i A t T s S

mt is mt is m, ,

it

(17)

3 | INTERACTIVE MULTI ‐SWARM BACTERIAL
FORAGING OPTIMIZATION

This section introduces the proposed IMSBFO algorithm in detail. Compared with the original
BFO,24 IMSBFO is improved mainly from aspects of the swarm division and structure ad-
justment, including multi‐swarm coevolution strategy, structural recombination, and in-
formation interactive mechanisms.

3.1 | Multi‐swarm coevolution strategy

Inspired by the coevolution mechanism of natural species, a bacterial multi‐swarm coevolution
strategy is proposed. This includes the coevolution modes of mutualism symbiosis and in-
traspecific competition in biology to improve the global search ability of the IMSBFO.

In traditional BFO, individuals are all in a single swarm, leaving a time‐consuming
problem. To overcome this problem, in this study, the whole swarm is divided into several
subswarms. Each individual in a subswarm represents a solution, and each subswarm
represents a subsolution space. In search of optimal solutions, the optimal individuals
within the swarm and those among the swarms will be retained to assist in information
exchange within and between the swarms. At the same time, each individual will gradually
approach the positions of the current optimal individuals and those away from the poor
position.

3.2 | Structural recombination

Unlike the original BFO, in IMSBFO, the traditional three‐level nested loop composed of
chemotaxis, reproduction, and elimination/dispersal operations are broken, and these three
operations are operated sequentially. Each individual will carry out chemotaxis, re-
production, and elimination/dispersal operations one of another during the iterative
optimization process.
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3.2.1 | Chemotaxis

Chemotaxis mainly simulates the swimming and tumbling movements of Escherichia coli.
First, the bacteria tumble according to a random direction and step size. They also de-
termine whether the current tumble direction is an effective flip direction by calculating
and comparing the fitness values before and after the tumble. If it is effective, the swim-
ming operation will continue in this direction; otherwise, the comparison will go on within
limited iterations.

3.2.2 | Reproduction and elimination/dispersal

Considering the reproduction operation, the first half of the optimal individuals sorted ac-
cording to the fitness value will be retained, and the second half of the individuals will be
replaced by the first half of the optimal individuals. Because the IMSBFO removes the three‐
layer nested loops, the reproduction operation is designed to be intergenerational, executed to
avoid premature convergence.

In the elimination/dispersal operation, all the bacteria have a fixed probability of death and
have a fixed probability to migrate to the position with a better fitness value. The dead bacteria
will be replaced by randomly generated new ones.

Therefore, the phenomenon of “natural selection, survival of the fittest” caused by re-
production and elimination/dispersal is considered as a form of intraspecific competition.

3.3 | Information interactive mechanisms

Information interaction is a common form of intraspecific mutualism. Biological individuals
often decide their behaviors through the obtained information to obtain better resources and
avoid adverse factors. According to the relationship among the interacted individuals, in-
formation interaction can be divided into two categories: information interaction within a
subswarm and information interaction among subswarms.

3.3.1 | Information interaction within a subswarm

Within a subswarm, each individual can interact with its two neighbors (according to the order
in the initialization process) or any other random individual with a predefined probability and
learn from the best individual. In addition, the swarm's optimal individual and historical
positions of each individual are important references for individual evolution. Information
interaction within a swarm can be divided into four categories.

Interact with the optimal neighbor
To improve the convergence performance of the algorithm, when individual i interacts with the
neighboring individuals in subswarm j, the fitness values corresponding to its two neighbors
and the individual itself are compared. Individual i will learn from its neighbor Nij

t only when
Nij
t holds the best fitness value among those three individuals.
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Interact with a random individual
To increase the diversity of solutions in a search space and avoid falling into local optimal
solutions, each bacterial individual i has the opportunity to interact with a random individual
Rj
t in subswarm j.

Interact with the suboptimal individual
According to the order of individual fitness value, the optimal individual position in subswarm
j is retained, and the corresponding individual position is recorded as Cbestj

t. Thereafter, other
individuals in subswarm j will approach this individual during the foraging process to obtain a
higher fitness value.

Interact based on self‐historical optimal position
The self‐historical optimal position Pbestij

t of individual i in subswarm j reflects the life course
of its interaction with the surrounding environment and other individuals. Thus, Pbestij

t is
retained as part of the new location information.

3.3.2 | Information interaction among subswarms

Information interactions also exist among different bacterial swarms. In the iterations, the
positions of subswarm optimal individuals are recorded. Thereafter, the global optimal in-
dividual Gbestt is obtained, considering the fitness values of the subswarm optimal individuals.
Each individual will learn from the global optimal solution of the whole swarm while inter-
acting with one another in the subswarms.

3.3.3 | Learning strategies for effective information

We take a certain individual i in subswarm j in iteration t as the reference, and this is defined
by Pij

t . Thereafter, the bacterial individuals that can interact with individual i can be divided
into five groups, including the optimal neighbor of individual i in subswarm j, a random
individual in subswarm j, optimal individual in subswarm j, historical self‐optimal individual,
and global optimal individual. On the basis of the five types of bacterial individuals above, we
propose the learning strategies for effective information. These strategies are presented below.
αk and ∈β k, {1, 2}k are the random learning factors.

• Strategy I: Learn from both the optimal neighbor Nij
t of individual i or a random individual Rj

t

in subswarm j.





P
N P N

R P N
=

, > ,

, < ,
ij
t ij

t
ij
t

ij
t

j
t

ij
t

ij
t

+1 (18)

N P P= min{ , }.ij
t

i j
t

i j
t

( −1) ( +1) (19)
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• Strategy II: Learn from both the historical self‐optimal individual Pbestij
t and random

individual Rj
t in subswarm j.

( ) ( )P P α Pbest P β R P= + − + − .ij
t

ij
t

ij
t

ij
t

j
t

ij
t+1

1 1 (20)

• Strategy III: Learn from both the global optimal individual Gbestt and suboptimal individual
Cbestj

t in subswarm j.

( ) ( )P P α Gbest P β Cbest P= + − + − .ij
t

ij
t t

ij
t

j
t

ij
t+1

2 2 (21)

Figure 1 presents the three strategies above and clearly illustrates the information inter-
active mechanisms within and among subswarms. The flowchart of IMSBFO is demonstrated
in Figure 2 to show the structural reorganization of chemotaxis, reproduction, and elimination/
dispersal operations, and three learning strategies for effective information.

4 | SOLUTION BASED ON THE IMSBFO

To overcome the complex AMT scheduling model and build a bridge between binary
task–technician matching problem and continuous IMSBFO algorithm, this section mainly
introduces the detailed parallel technician assignment rules, encoding scheme, and
corresponding transformation mechanisms.

4.1 | Parallel technician assignment rules

Contrasting from the AMT scheduling method in the existing literature,1,3 we consider the
aircraft as a separate dimension to carry out technician assignment for practical con-
venience. Regarding each aircraft, the assignment of maintenance technicians is per-
formed in parallel. Specifically, maintenance technicians cannot carry out maintenance
work on multiple aircrafts simultaneously, and all aircrafts share a fixed number of

FIGURE 1 Model of information interaction [Color figure can be viewed at wileyonlinelibrary.com]
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maintenance technicians. Therefore, we formulate two technician assignment rules below
to compactly implement the parallel aircraft maintenance tasks:

• The maintenance technicians in a working state cannot be assigned.
• The maintenance technicians who cannot meet the requirements of maintenance task
license levels cannot be assigned.

On the basis of the two rules above, supposing there are several aircrafts in the hangar, each
aircraft has a task sequence in a specific shift. When assigning AMTs, we first set a virtual timer and
task counter for each aircraft, and assign the first task to the aircrafts according to the start time of
the maintenance work. After the first task–technician matching is predetermined, the time for the
specific maintenance technician to complete the task is recorded in the timer of the aircraft, and the
value of the corresponding task counter is increased by one unit. In the subsequent assignment
operations, we select the aircraft that completes the current task first, according to the timers and
task counters of all aircrafts, and assign a technician to the task of this aircraft. For each aircraft,
when the value of task counter reaches its actual task quantity, it means that all maintenance works
have been completed, and no technician will be needed. To better illustrate the task–technician
matching procedure, the relationships among tasks, technicians, virtual timer, and task counter are
illustrated in Figure 3.

FIGURE 2 Flowchart of interactive multi‐swarm bacterial foraging optimization (IMSBFO)
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4.2 | Encoding scheme

To realize the combination of the model and algorithm, we encode the task–technician as-
signment as shown in Table 3. In shift t, the value of position (M, Sit), for example, zmt is, in the
maintenance task–technician allocation table of aircraft i is 0 or 1 (shown in Table 3).
“z = 1mt is, ” indicates that Task s of Aircraft i is assigned to maintenance Technicianm in Shift t.
Because one maintenance task can only be completed by one maintenance technician, the
value of only one position in each column of Table 3 is “1.” Each individual represents a
solution in the whole solution set space, recording the maintenance task–technician assign-
ment in all shifts and on all aircrafts.

4.3 | Transformation mechanisms in encoding scheme

In this study, the IMSBFO algorithm is used to optimize the location of an individual in a subswarm.
In the optimization process, the partial evolution of an individual and its conversion process are
shown in Tables 4 and 5, respectively. The red number indicates the working maintenance tech-
nicians, the gray shading indicates that the maintenance technician level is lower than the license
requirement, and the yellow shading indicates the selected maintenance technician. In particular, to
ensure that the working maintenance technicians are not assigned to other maintenance tasks, the
corresponding positions of the working maintenance technicians are forced to be “0.”

Table 5 is presented to illustrate the transformation process compared with Table 4. Considering
each column in the table, among the maintenance technicians who are idle and whose license levels
are higher than the task requirement level, set the position with the largest corresponding value as
“1” and the rest as “0.” For example, regarding Task 3 of Aircraft i in Shift t, only maintenance

FIGURE 3 Relationships between parallel technician assignment rules [Color figure can be viewed at
wileyonlinelibrary.com]
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technicians M8, M9, M10, and M11 meet the license‐level requirements, and maintenance techni-
cians M7 and M10 are in the working state. Therefore, maintenance technician M9, with the largest
continuous value of 0.15, is selected as the allocation object of maintenance Task 3.

5 | EXPERIMENTS AND RESULTS

In this section, we design six groups of experiments with different scales to test the efficiency of
the IMSBFO for our considered AMT scheduling problem.

The data of aircrafts, maintenance tasks, and maintenance technicians used in the ex-
periment are generated based on interviews of aircraft maintenance companies (such as ST
Aerospace Guangzhou Aviation Services) and Reference [3]. In our experiments, the number of
aircrafts is A∈ {2, 4, 6}, the number of maintenance technicians is M∈ {11, 15, 19}, and the
number of shifts is T∈ {3, 5, 7, 10}. The license level of AMTs is Q∈ {1, 2, 3} and the corre-
sponding labor costs are 0.5, 1, and 1.5 per hour. The specific value of A, M, T, and S is shown

TABLE 4 Continuous encoding mechanism
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TABLE 5 Binary encoding mechanism

TABLE 6 Number of aircrafts (A), technicians (M), shifts (T), and tasks (S)

Instances A M T S

Instance 1 2 11 (4, 3, 4) 3 10 (3, 4, 3)

Instance 2 2 11 (4, 3, 4) 5 14 (3, 4, 3, 2, 2)

Instance 3 4 15 (5, 5, 5) 5 14 (3, 4, 3, 2, 2)

Instance 4 4 15 (5, 5, 5) 7 18 (3, 4, 3, 2, 2, 2, 2)

Instance 5 6 19 (7, 6, 6) 7 18 (3, 4, 3, 2, 2, 2, 2)

Instance 6 6 19 (7, 6, 6) 10 25 (3, 4, 3, 2, 2, 2, 2, 2, 3, 2)
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in Table 6. Taking Instance 1 as an example, the number of AMTs whose license levels are 1, 2,
and 3 is 4, 3, and 4, respectively. There are three shifts, for Instance, 1, and the corresponding
number of tasks in each shift is 3, 4, and 3. The time for the AMTs to complete each main-
tenance task is given as a fixed real number between 1 and 3, and the corresponding main-
tenance task preference is given as a fixed integer between 1 and 3. Particularly, each shift lasts
for 8 h, and the working time of an AMT shall not exceed 8 h/day.

We compare the IMSBFO to other heuristic algorithms, including BFO,24 bacterial colony
optimization (BCO),34 swarm intelligence bacterial colony optimization (SiBFO),35 PSO,18

CLPSO,36 and GA.14 In each experiment, we gradually expand one or more of the number of
aircrafts, AMTs, shifts, and maintenance tasks. Particularly, during the algorithm comparison,
the same group of experiments uses the same data. This indicates that we can observe the
adaptability and superiority of the proposed IMSBFO algorithm to AMT scheduling problem.

5.1 | Parameter settings

To better illustrate the superiority of the designed IMSBFO algorithm in the AMT scheduling
problem, the parameters of each comparison algorithm are selected using a large number of pre-
experiments. The number of individuals Np is 30, and that of the fitness function evaluations (Fes) in
IMSBFO, BFO, BCO, SiBFO, PSO, CLPSO, and GA is 30,000. The elimination probabilities Ped in
IMSBFO, BFO, and SiBFO are set to 0.25. Details of the parameter settings are listed as follows:

• In IMSBFO, the number of subswarms is 5, N = 10s , C = 0.2start , C = 0.01end , and that of the
iterations between two reproduction operations is F = 10re . The number of generations be-
tween two reproduction operations is set to 200.

• Considering BFO, the number of chemotaxis, reproduction, elimination/dispersal, and swimming
are N = 1000c , N = 5r , N = 2e , and N = 4s , respectively. The chemotaxis step C = 0.1.

With regard to BCO, N = 1000c , N = 50s , C = 0.2start , and C = 0.01end .

• Regarding SiBFO, the number of iterations between two reproduction operations is
F = 200re , and that of the swimming operations is N = 4s . The chemotaxis step C = 0.1.

• In PSO, the learning factors c c,1 2 are set to 2, and the inertia weight w = 0.9.
• In CLPSO, the learning factor c= 1.49445, and the inertia weight w = 0.90 , w = 0.41 .
• In GA, the crossover probability and mutation probability are p = 0.95c and p = 0.1m ,
respectively.

5.2 | Experimental results and comparative analysis

To illustrate the efficiency of the proposed the IMSBFO, BFO, BCO, SiBFO, PSO, CLPSO, and
GA algorithms are utilized as the comparison algorithms, and six groups of experiments with
parameters listed in Table 6 are conducted 10 times. Figures 4 and 5 are the convergence curves
and boxplots drawn according to the mean value of the total costs, respectively. Table 7 lists the
maximum, minimum, mean value, and standard deviation of the optimal total cost obtained by
the above seven algorithms in all the experiments.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 4 Convergence curves of the objective function based on the BFO, SiBFO, BCO, PSO, CLPSO, GA,
and IMSBFO algorithms. ACO, ant colony optimization; BCO, bacterial colony optimization; BFO, bacterial
colony optimization; CLPSO, comprehensive learning particle swarm optimizer; GA, genetic
algorithm; IMSBFO, interactive multi‐swarm bacterial foraging optimization; PSO, particle swarm
optimization; SiBFO, swarm intelligence bacterial colony optimization [Color figure can be viewed at
wileyonlinelibrary.com]

18 | NIU ET AL.

http://wileyonlinelibrary.com
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(C) (D)

(E) (F)

FIGURE 5 Boxplots of the objective function based on the seven algorithms. ACO, ant colony
optimization; BCO, bacterial colony optimization; BFO, bacterial colony optimization; CLPSO, comprehensive
learning particle swarm optimizer; GA, genetic algorithm; IMSBFO, interactive multi‐swarm bacterial foraging
optimization; PSO, particle swarm optimization; SiBFO, swarm intelligence bacterial colony optimization [Color
figure can be viewed at wileyonlinelibrary.com]
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First, considering the optimizing ability demonstrated in Figure 4, among the six groups of
experiments, IMSBFO can find the scheduling scheme with the minimum total cost, followed by
CLPSO, BCO, PSO, and GA. BFO shows the worst performance. Considering the increase in the
number of shifts and tasks, the optimal total cost of each algorithm becomes larger, whereas the
increase in the total maintenance cost with the IMSBFO algorithm is the smallest. When the number
of shifts and tasks remain the same, and the number of aircrafts and maintenance technicians
increases, compared with other algorithms, the IMSBFO can still get the minimum total cost.

TABLE 7 Comparisons of MCBFO with the other optimization algorithms on the total cost

Instance BFO SiBFO BCO PSO CLPSO GA IMSBFO

1 max 27,238 26,867 6936 16,052 6936 6512 5028

min 16,185 6188 5308 5586 5308 4997 4601

mean 21,452 14,598 5997 7920 5997 6051 4862

std 5112 6343 660 4091 660 451 145

2 max 41,706 40,597 20,432 29,169 20,432 19941 8078

min 19,976 19,778 9799 8988 9799 9574 7056

mean 36,743 31,660 16,829 16,520 16,829 15063 7630

std 7234 7233 4541 8192 4541 4905 358

3 max 178,530 159,210 128,530 165,930 128,530 147230 46,400

min 138,660 119,000 87,369 68,036 87,369 99461 13,916

mean 159,310 142,480 110,640 110,490 110,640 124710 25,467

std 13,574 15,330 12,195 27,915 12,195 13905 9935

4 max 263,290 203,920 174,300 163,400 174,300 183900 50,572

min 183,880 154,120 132,060 112,620 132,060 146410 19,062

mean 230,410 189,590 149,030 141,300 149,030 168090 38,155

std 23,437 15,643 16,264 17,385 16,264 13110 10,411

5 max 386,280 343,790 323,480 353,320 323,480 326110 281,060

min 334,160 314,480 240,970 251,920 240,970 296280 151,890

mean 366,140 336,230 279,390 300,320 279,390 310540 211,820

std 16,777 9078 24,987 34,860 24,987 9317 51,202

6 max 568,880 503,960 442,670 516,200 442,670 468030 405,810

min 475,560 448,190 364,490 402,610 364,490 418390 326,010

mean 518,420 478,690 404,350 449,480 404,350 442640 361,810

std 29,687 20,482 20,810 38,169 20,810 17895 27,771

Abbreviations: ACO, ant colony optimization; BCO, bacterial colony optimization; BFO, bacterial colony optimization; CLPSO,
comprehensive learning particle swarm optimizer; GA, genetic algorithm; IMSBFO, interactive multis‐warm bacterial foraging
optimization; MCBFO, multi‐colony bacterial foraging optimization; PSO, particle swarm optimization; SiBFO, swarm
intelligence bacterial colony optimization.

Note: The bold values in Table 7 refer to the optimal values among seven algorithms when comparing the maximum,
minimum, mean and standard deviation of total costs.
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Considering the convergence performance, when the scale of the problem is relatively
small, such as (A) and (B) in Figure 4, the IMSBFO, BCO, PSO, and GA converge faster than
the BFO, SiBFO, and CLPSO, and IMSBFO holds the fastest speed. Because the scale tends to
be larger, such as (C)–(F) in Figure 4, compared with other algorithms, the convergence speed
of IMSBFO is slower. Even at that point, the IMSBFO can still provide AMTs scheduling
scheme with the lowest cost.

The boxplots in Figure 5 illustrate that IMSBFO is the best in terms of the average, quantile, or
minimum distribution of the mean value of the total cost in all the iterations. In general, the
distribution of all the solutions obtained by the IMSBFO is most concentrated and closer to the
optimal solution. Regarding the problem expansion, the concentration of PSO is improved, and it
even surpasses the IMSBFO in (B) and (C); nonetheless, its ability to search the optimal solution is
weaker than the IMSBFO. As visualized in Table 7, the IMSBFO surpasses the other five algo-
rithms, considering the maximum and minimum mean values of total cost in the six groups of
experiments. This highlights the searching superiority of the proposed algorithm. Moreover, in
Instances 1–4, the standard deviation of total cost obtained by the IMSBFO is the smallest, whereas
in Instance 5 and 6, when the problem scale becomes larger, the standard deviations of the total
cost obtained by the SiBFO and GA are lower than that by the IMSBFO. This is because when the
scheduling model is relatively simple with a smaller A, M, T, and S, the optimization process is
easier to realize, and the IMSBFO can find the optimal solution more quickly with a lower standard
deviation using its strong searching ability. When A,M, T, and S increase, the optimization process
becomes complex, and the standard deviation of the results decreases. Considering the SiBFO and
GA, the solutions obtained in most experiments are approximate solutions with a large gap in the
optimal solution, leading to lower standard deviations.

The following examples are given to describe a specific AMT scheduling scheme. When
A = 3, M = 11, T = 3, and S = 10, the AMT scheduling scheme obtained by the IMSBFO is
shown in Tables 8 and 9. This illustrates the maintenance technician assigned to each
aircraft maintenance task and the corresponding working time. The data in Table 8

TABLE 8 Task–technician assignment scheme based on the IMSBFO

Shift t/8 h Shift t/8 h Shift t/8 h

Aircraft No. S1 S2 S3 S1 S2 S3 S4 S1 S2 S3

A1 5 4 10 1 8 8 8 2 4 4

A2 9 9 9 11 7 3 1 6 6 10

A3 10 2 5 3 11 11 7 5 2 6

Abbreviation: IMSBFO, interactive multi‐swarm bacterial foraging optimization.

TABLE 9 Corresponding maintenance time

Shift t/8 h Shift t/8 h Shift t/8 h

Aircraft No. S1 S2 S3 S1 S2 S3 S4 S1 S2 S3

A1 2.3 1.9 2.3 2.1 1.5 1.2 2.7 2.5 2.5 3

A2 2 2.2 1.5 1.1 2.9 2.5 2 2.2 1.6 2.5

A3 2 2.5 2.5 2.7 2.5 1.5 2.3 2.4 2.6 3
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indicate that the results of the IMSBFO algorithm tend to minimize the number of main-
tenance technicians participating in the same shift. For example, in the first shift, tech-
nician M9 performs three tasks, and technicians M5 and M10 perform two tasks,
respectively. This arrangement aims to provide as many AMTs as possible for the sub-
sequent shifts and guarantee the rest time of the AMTs who do not participate in the
maintenance work of the current shift. This is in line with the needs of improving the
efficiency of technician utilization during the enterprise interview.

5.3 | Model‐scale analysis

The scale of this model is determined by four dimensions (e.g., aircraft, technician, shift, and task). In
Table 3, the ordinate contains aircraft and maintenance technicians, and the abscissa contains shifts
and maintenance tasks. Compared with the latter, the number of aircrafts and maintenance tech-
nicians directly affects the number of parallel tasks and corresponding technician assignment ability,
which is the key factor affecting model complexity. Therefore, considering the expansion of the
ordinate and abscissa, we divide the process of problem expansion into three approaches: simple
horizontal‐, complex vertical‐, and combined‐scale expansions.

Figure 6 demonstrates how the three‐problem scales expand using three arrows. We divide
the coordinate system into four distinct regions: Ⅰ–Ⅳ, according to the number of aircrafts/
AMTs and shifts/maintenance tasks.

5.3.1 | Analysis of the simple horizontal‐scale expansion

The process from region Ⅰ to Ⅱ can be represented by comparing (A) and (B), (C) and (D), and
(E) and (F) in Figure 4. We find that when the number of aircrafts and AMTs remain un-
changed, whereas the number of shifts and maintenance tasks increases, the total cost increases
slightly. It is equivalent to the assignment of technicians for a constant number of maintenance
tasks. The only difference is the number of shifts and tasks. During the solution process, the
constraints will not be changed. Consequently, the fluctuation in the total cost mainly reflects
the variation of the manpower cost.

FIGURE 6 Three approaches to expand the scale of the problems [Color figure can be viewed at
wileyonlinelibrary.com]
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5.3.2 | Analysis of the complex vertical‐scale expansion

The process from region Ⅰ toⅢ can be represented by comparing (B) and (C), and (D) and (E) in
Figure 4. When keeping the number of shifts and tasks constant and increasing the number of
aircrafts and maintenance technicians, the total cost becomes larger. It is equivalent to the
number of tasks performed in parallel increases; nevertheless, it will face more constraints in
technician assignment because of the increase in working AMTs. In addition, if there are not
enough maintenance technicians, it will lead to problems, such as unfair workload distribution,
overtime work, and so forth, resulting in greater total cost increasement.

5.3.3 | Analysis of the combined‐scale expansion

The process from region Ⅰ toⅣ can be represented by comparing (A), (C), and (E); (B), (D), and
(F) in Figure 4. When the number of aircrafts, AMTs, shifts, and tasks increase, the total cost of
the scheduling model will rise to the largest margin. For a larger‐scale problem, the optimi-
zation process becomes more complex, and it becomes more difficult to find the optimal
scheduling solution. At the same time, with the increase in the maintenance technicians and
extension of working hours, the manpower cost will increase, and the satisfaction of the
technicians and the fairness concern of workload will become more difficult to realize.

6 | CONCLUSIONS AND FUTURE DIRECTIONS

Contrasting from the existing models that ignore the dimension of aircraft when assigning AMTs,
this study comes up with a more compassionate scheduling scheme, considering personnel work
satisfaction from four dimensions of aircraft, shift, maintenance task, and technician. Thereafter,
inspired by the mechanism of interspecific mutual assistance, mutualism, and competition in
biology, the IMSBFO algorithm is proposed based on the ideas of multi‐swarm coevolution, in-
formation interactive mechanism, and structure recombination. Then, we design six different scale
experiments to compare the optimization performance of seven algorithms, including IMSBFO. The
simulation results imply that compared with other algorithms, the IMSBFO algorithm has a faster
convergence speed, stronger optimizing ability, and better adaptability. Through the scale expansion
analysis, we find that the increase in total cost caused by the increase number of aircrafts is much
higher than that caused by the increase number of shifts and tasks.

In the future, we will further explore the AMT scheduling problem under dynamic main-
tenance orders. In addition, we will try to design a multi‐objective heuristic algorithm based on
the IMSBFO and apply it to solve the multi‐objective AMT scheduling problem.
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