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Abstract. Swarm optimization algorithms and agent based modeling
(ABM) are two closely related research areas, parts of the multi agent
system field, but they are traditionally not combined. Swarm optimiza-
tion, in this case the bacterial foraging optimization (BFO), searches
for an optimal solution while the ABM searches for a conclusion which
resembles the real world, and it can be far from optimal. To bridge the
gap, the overall goal this paper is to propose a new paradigm in the form
of an architecture and operation procedures, thus creating a BFO-ABM
hybrid. The other goal is to create a method which enables 3D visualiza-
tion of the BFO algorithm. Firstly, an environment is created together
with bacteria which physically perform all operators of the BFO. Sec-
ondly, a way of seamlessly embedding the bacteria from the BFO into the
ABM environment is described. The bacteria are then manipulated and
motivated with food and toxicity to act in a certain agent-like way. Sim-
ulation results prove that the agents can be effectively used as an ABM
tool to present agents of all sizes and behaviors resembling numerous
things, from companies, vehicles to people.

Keywords: Swarm optimization + Agent based modeling -
Evolutionary computation

1 Introduction

1.1 A Subsection Sample

Computational field of Multi agent systems (MAS) is an interesting field of
research which encompasses numerous subfields all based on individual and intel-
ligent agents. These agents are autonomous, decentralized and have only their
local view. Swarm optimization algorithms and agent based modeling approaches
are subfields of MAS but they are not traditionally combined. At first glance they
seem to be based on different principles but actually their logic is quite similar.
The main difference is the goal which is ought to be made: in optimization there
needs to be an optimal solution and in ABM a conclusion that resembles the
real world, the result can be far from optimal.

Optimization algorithms have been used to solve different real world opti-
mization and engineering problems. They are usually based on behaviors of cer-
tain animals or natural phenomena employed to search for an optimal solution,

© Springer Nature Singapore Pte Ltd. 2020
L. Pan et al. (Eds.): BIC-TA 2019, CCIS 1159, pp. 727-738, 2020.
https://doi.org/10.1007/978-981-15-3425-6_58
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to name a few of them: Particle swarm optimization [1], Hydrologic Cycle Opti-
mization [2], Differential evolution [3], Water Cycle Algorithm [4], Artificial Bee
Colony [5], Genetic Algorithm [6], Ant Colony Optimization (ACO) [7], Bacterial
Foraging Optimization Algorithm (BFOA) [8] and numerous others which have
proven themselves in different areas. These algorithms are always being updated
through consideration of new strategies; for example within the BFO change
of the chemotactic step length [9], population change [10] and the algorithm
being adaptive [11]. Even though these algorithms are based on the real world,
only a few tackle the changing habitat where the microorganisms are living [12].
This dynamic relationship makes them more similar to ABMs. They are defined
as dynamic optimization tools which are an important focus point in research
[13-15]. They consider that surroundings affects organisms but, in turn, they
also affect the surroundings making them an important research point [16].

On the other hand, agent based modeling (ABM) is based on analyzing
behaviors, emergence and adaption of complex systems with the notion that
these systems are built from the bottom up. Their beginnings can be traced
to cellular automata [17] and based on those simple principles numerous ABM
usages have spawned, ranging from sociology [18], economics [19] and political
science [20]. Even though both approaches are a part of MAS, both have intelli-
gent agents and their results are based on their interactive behavior, combining
or hybridizing them has not been done.

Bacteria within the BFO move around the environment while searching for
food, consume it and move on to other areas. While this phenomena is interesting
from the optimization standpoint, ABM is focused on the bacterial behavior and
movement patterns. The primary goal of this paper is to create an architecture,
mathematical representation and operation procedures in order to bridge the gap
between optimization algorithms, namely the BFO, and agent based modeling,
we will refer to it as BFO-ABM. Secondary goal is to create a method to enable
3D visualization of the BFO algorithm. To construct it, certain changes to the
original are proposed: Creation of a 3D environment where the bacterial agents
move and forage. Harnessing the environment (crucial element of the ABM)
which the optimizing bacteria can inhabit (crucial element of the BFO). Cre-
ation of a methodology which can help in visualizing BFO operators and actions
previously described only in writing. Employing the BFO’s bacteria, through the
ABM prism, as agents representing anything from companies to people.

To show performance and test the modeling capabilities of the BFO-ABM
hybrid, we conducted two experiments on an explicit objective function which
presents the environment. The first experiment is based on observing the bac-
terial agents’ movement and behavior, disregarding the decline in nutrients and
toxicity levels. Second experiment is based on observing bacterial agents’ behav-
ior until all the nutrients are completely gone while avoiding the toxic areas.
In these two scenarios bacterial health is observed together with the speed of
convergence and their effect on the objective function (the environment). This
paper is organized as follows: Sect.2 presents the formation of the environ-
ment around which the bacteria move and interact with. Section 3 describes the
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BFO-ABM hybrid along with different bacterial actions. Section4 presents
results of two experimental studies together with discussions and potential uses
of further modeling, followed by the conclusion in Sect. 5.

2 Environment

Optimization algorithms are usually not visualized, but if we wish to understand
their movement we should transfer them to 2 or 3 dimensions. This is environ-
ment creation is the crucial step of the BFO-ABM hybrid since it enables the
first element to be implemented into the second one. The algorithm envisions
a space for activity in the form of a classical grid topology, called the Moore
neighborhood, Fig. 1. Bacterial agents are grounded on the grid and are able to
follow its topological change in 3D.

The algorithm is consisted out of two basic types of elements: habitat grid
and the bacteria. They exist together and effect one another - they are in sync
at every moment. As the environment possesses certain positive elements (food,
nutrients) and negative ones (toxins and/or no food) the organisms are forced
to adapt to it. The change comes from them eating the available food, where it
exists and leaving it foodless and uninteresting. As the current is left empty they
search for the next best place to forage, which contains the highest quantity of
available food.

Grid. The grid covers a 3D space of X X Y x Z through which movement is pos-
sible but only across the X x Y grid surface, while their action and implications
take effect and are noted on the Z axis. This can be represented as:

Grid, = {8,X,Y,Z (1)

Where the Grid; depicts the habitat over which the agents move at a certain
moment t while § is the amount of food which is distributed around it. X And Y
are dimensions of the grid which are previously defined and are stationary while
Z is a dynamic grid term, which is being changed by the foraging process.

Pi,j P,
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Fig. 1. Moore neighborhood movement possibilities [21]
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Bacteria. Each bacteria can be defined as a set of its current characteristics.
This means that a bacterium B at a certain time point t is defined and identified
by its current position on the grid in the form 6,,. coordinates but also the
current iteration step.

B = {04y, iter (2)

All food is randomly distributed across the grid with coordinates x and y
and is consumed over t time instances. In both tested versions of the algorithm
the food is not created over the course of iterations.

3 Employing the BFO as an ABM

Formation of the Habitat. When constructing the habitat multiple factors
need to be taken into account. Analyzing these factors is key for understanding
it and extracting some interesting waypoints from it. Surroundings can be pre-
sented as a combination of terrain elements, toxic areas, but also areas which
are filled with food. We can present the movement space as the Z axis together
with its parts:

Z = Zierrain + Ztoa:icity + Zfood (3)

The bacteria need to consider all of these factors and navigate through them.
They will choose to visit and interact with areas which possess the easiest way
and the most food — this implies that the minimum of the function is there.
To form the Z axis all of the layers are combined into one by addition of their
values.

This means that there are certain tradeoffs which need to be considered. Such
as: if there is a lot of food at a local area but the terrain is inhospitable, there
will be no interest in going there; if there is food but the area is mildly dangerous
the overall success needs to be compared with other areas to see if pursuing that
area is the best option; and finally if the area is easy to get to and there is a lot
of food it will be very interesting to visit. Mathematically we can present it as
different points (AZ}, AZ2, AZ3) which have the same coordinates but are on

T,y T,y
different axes, their impact on the Z axis will be calculated as follows:

ifsum > 0,interest is low

Afj!, Afi, Af‘z = ¢ ifsum = 0, interest is neutral (4)

ifsum < 0,interest is high

After having this calculation for all points on all axes the summary of them
in the form of Z axis is created (Fig.2). This is also done after each iteration
step since the consumption of nutrients reduces their availability in certain areas
after each step.
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Fig. 2. Z axis formation

Initialization. Bacteria move through and across space which can be created
implicitly, using a formula, or explicitly by directly creating it in Excel, for
example. Major advantage of the explicit finite method is its relative simplicity
and computational ease, on the other hand the implicit environment creates
better solutions. In the case of this experiment an explicit one with 20 x 20
fields is used. Amount of food S is distributed across the environment grid thus
forming the Z axis minima. Initial positions of agents at t=0 are randomly
generated.

Operators. Bacteria move around their habitat by using their flagella (a whip-
like part of their body) with the goal of escaping hazardous and foodless areas
and finding ones with food. This process is called chemotaxis but the BFO-
ABM considers a Migration term, which will be described further in the text.
If a bacterium does not “consume” enough food or is not healthy enough it will
die. To keep the population constant the organisms will reproduce by dividing
into two identical copies which are positioned at the same location. This keeps
the population diversified and eliminates some bacterium which are trapped in
local minimum. If greater numbers of them are concentrated around a certain
food source they will consume it food faster. Dispersion is employed to make the
population more dynamic and to stimulate exploration and foraging in different
areas.

Migration. Migration is defined as moving across the physical and dynamic space
whose action requirements are presented by pseudocode in the Table1. First
task is to find the closest minimum to each bacterium, the minimum is defined
through its X,;» and Y;,;, coordinates. After this, the comparison between the
current coordinates of the bacterium (X pgqe,Ypqc) starts. If the coordinates of the
food and the bacterium match, then the bacterium is at the right place and the
feeding can begin. Important thing to note is that in this algorithm chemotazis
operator helps agents move around a local area, migration considers covering of
greater - global distances. To conserve energy the bacteria will choose locations
where food is plentiful. This implies a greedy selection and helps with focusing
on potential global minima.

Agent Waypoints. In the presented case, visualization of nutrient abundance
is presented using lower values of the Z axis while the higher values do not
possess any food, maybe because it has already been consumed, thus that area
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Table 1. Pseudo code for the migration function

For I = 1:8
If XpBac is different than X,,in
Move it towards it by 1 step
elseif YBge is different than Yi.in
Move it towards it by 1 step
End
End

is not interesting. That is how the BFO-ABM harnesses the bacterial interest
and uses it as an agent modeler. The agents consider these low locations as
waypoints or areas of interest to move about. The pseudo code is based on the
current location (Xpae,YBqc) and the memorization of the History - where the
agents have already been. Also important is the History®™® which memorizes
the whole historical path of them but without the last position. This means
that the bacterium influences the environment only if it has spent some time at
the location, if it has not (meaning that the coordinates of the historical paths
and the current position do not match) the bacterium is just passing by and
has visited that place for the first time. This comparison and exclusion is made
because we want to find out what are the areas of interest and at the same time
exclude the path, because we presume it does not possess food. If the coordinates
match then a speed of consumption value is added to the Z axis point reducing
the interest which the bacteria have for that point, in other words the food
located at that point is reduced by that amount by a single bacterium foraging
activity.

Stopping Criteria. The algorithm stops because of two reasons. First one being
the iteration counter reaches its maximum and all the operators have been used.
Second reason is that all food in the environment has been consumed (Table 2).

Table 2. Pseudo code for the consumption function

For I = 1:S
Historyx (1)=Xpac && Historyy (I)=Ypac
History$*=1length (Historyx)-1 && History$"?=length(Historyy)-1
If Historyx - History$t? == 0 && Historyy - History$"? == 0
Z(XBacsYBac) == Z(XBac,YBac) *1
End
End

4 Experimental Studies

To demonstrate the algorithm two scenarios are taken into account. As a control
in the experiment the grid considered will be the same size and characteris-
tics, both will have the same number of minima which are corresponding to
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the amounts of nutrients. It is created using an explicit method based on Excel
tables, each corresponding to a specific value of terrain characteristics, toxicity
location and food distribution; they are summarized into a single value of the
7 axis which size is 20 x 20 fields. Figure 3 shows the initial shape of the envi-
ronment grid. The minima are marked as lower values than 7 while values equal
to 7 present foodless area which are of no interest. Bacteria will search for food
located in the minima. Corresponding values can be found in the Table 3. After
the initialization the agents start their foraging activity and their actions take
effect.

Fig. 3. Initial values of the Z axis for the two experiment scenarios.

4.1 Simulation I

Population for the first experiment is set to 5. Speed of nutrient consumption is
set to 0.001. Stopping criterion of the algorithm, relies on the number of itera-
tions and is set to 100. Figure 4 shows a moment at the 30" iteration; bacteria
are converging to the absolute minimum which is closest to them. From the
moment of entering the minimum they begin foraging for food. This influence
and interaction is also visible in the table through the increase of mean, stan-
dard deviation and minimum values. Since there are no toxic areas around the
environment the bacteria can take the shortest (optimal) route.

i

Fig. 4. 7 axis situation at iteration 30

On the Fig. 5 we can see gradual warping of the terrain due to the increased
foraging. The first minimum has been foraged enough (it is no longer a minimum
because of terrain increase) so there is no more food there and other sources
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are being searched for. Compared to Fig.4 we can see food sources are getting
exhausted and bacteria need to move to other new ones. Note that the all bacteria
are positioned on the same coordinates making them a more effective swarm.

i

{HE
T

.

10 B 00
11 P
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o 2 E)

Fig. 5. Z axis situation at iteration 60

Figure 6 continues to show the causal relationship between the bacteria. We
see the increasing effects of the process through space warping. Also visible is
the gradual change of the minima’s color, from dark blue to lighter shades. This
is because the lack of food is presented as greater numbers, compared to the
global minimum which are darker colors.

L E) 3 0 s o

Fig. 6. Z axis situation at iteration 90 (Color figure online)

Final result of the interplay process can be seen on the Fig. 7. We see a very
different situation than the initial one (left side of Fig.3) all minima have been
affected because their values have been changed — increased numerically due to
the consumption of food which was located in them.

4.2 Simulation IT

The second simulation features an increased number of bacteria which is set
to 10 together with the incorporation of toxic areas. Initial Z axis shape and
values can be seen on the right part of the Fig.3. Since lower levels of the
axis present positive elements, food, negative elements are presented as higher
values; bacteria tend to evade them while foraging. The simulation shows how
more subjects act faster thus having a greater impact and achieving exploration
and exploitation of minima in a shorter time period, regarding the number of
iterations. This is due to more competition and the same food level making
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Fig. 7. 7 axis situation at the final iteration

dynamics and behaviors different. Toxic levels need to be avoided which changes
the path of the bacteria, making it a bit longer.

In the second simulation the stopping criteria was not the iteration limit but
the food depletion in the habitat. That is why there are no numbers lower than
7, which exist in the first experiment. As in the final result of the first simulation
we can see a great difference and effects which were left by the process (Fig. 8).
Also noticeable is the rate and convergence speed which is much greater than it
the first experiment; it can be seen on the Z axis. The experiment shows that
more agents act quicker and also that their efficiency is increased by swarming
and taking effect on a single location.

0 o o s 10 15 EY

Fig. 8. Z axis situation after all food is consumed

4.3 Discussion

Figure 9 shows the explicit objective function which is being optimized by the
interacting bacteria. From it we can observe consumption to movement ratios.
Namely, if the line is horizontal it shows the bacteria are moving to the next
minimum and during that movement they are not consuming. If the line is
steeper than the horizontal one it shows food consumption happening, steeper
line means more consumption per unit of time. Left side of the figure shows 5
and the right one 10 bacteria interacting. We can conclude that greater impact is
being achieved with 10 bacteria since the conversion rate is faster, even though
sometimes they take a longer route to avoid the toxic areas. The line would be
also much steeper if food sources were close together or in other words, if the
objective function (the environment) was of different shape and value.
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Fig. 9. Objective function from the two simulation scenarios

Table 3 summarizes all values of the Z axis from different experiment steps.
In the first experiment the mean and standard deviation are being increased
through the foraging process. Mean value has been increased from 6.475 to 6.959.
During the course of the experiment standard deviation is being steadily lowered
due to the foraging process, 0 will signal that there is no more food available.
Final value from the first experiment presents the global minimum which has
been increased, from 1 to 3. This is because all minima have been affected by
the foraging.

Table 3. Numerical values from the simulation

Result | First value | Fig. 3 | Fig. 4 | Fig. 5 | Final value I | Final value 11
Mean |6.475 6.642 | 6.817 | 6.922 | 6.959 7.075

Std 1.008 0.914 | 0.710 | 0.519 | 0.374 0.271

Max |7 7 7 7 7 9

Min 1 1 2 2 3 7

Second simulation has a different stopping criteria than the first one food
depletion in the habitat and also toxicity levels are visible. We see that the mean
has increased to 7.075 and standard deviation has been lowered to 0.271 signaling
deficiency of food but also that the toxicity levels are still active. The overall
maximum is 9 which also points to existing dangerous areas for the bacteria. On
Fig. 10 we can see how different bacteria have different fitness levels and how it
changes over time. It is interesting to note in both experiments that there are
several leaders forming, they come to the food source first and forage the most,
thus the others do not have the opportunity to eat.

4.4 Bacteria as Agents

It is important to grasp how useful can this BFO-ABM approach be. For example
we can consider these agents as companies which need to position themselves on
the market to have the best access to the customer base. The first company to
set up its business at a market quadrant usually wins, but the classical question
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Fig. 10. Individual bacterial fitness from the two simulation scenarios

is whether it is better to be focused only on certain customers or be ready to
move about and be more flexible; similarly done in [22].

Other consideration for the bacterial agents can be simulating the movement
of people around a certain space, they cannot move through walls and barriers
(presented as high toxicity levels); similar simulation is done in [23]. To simulate
a fire escape simulation we place the food outside of the room, bounded by “tox-
icity” serving as walls. Then we can check how bacterial agents act depending on
the danger and the environment, as seen in [21]. Apart from these applications
the BFO-ABM approach can consider and simulate numerous other agents and
scenarios no matter the size or intention.

5 Conclusion

Use of swarm optimization algorithms and agent based modeling is usually kept
separate. This is understandable since behind them are different paradigms of
operation. Apart from these differences, there are numerous similarities, because
they are both from the multi agent systems field. Based on those similarities,
this paper has presented a new architecture and framework which is used for
modeling bacterial behavior within a 3D environment. It also showed how to
seamlessly incorporate bacteria to act according to the ABM rules which makes
this approach a hybrid one. The whole environment is presented as an objective
function which needs to be optimized by bacterial consumption of food while at
the same time avoiding the toxic areas.

Different simulation scenarios showed how bacteria can be manipulated and
motivated with food and toxicity to act in a certain agent-like way. Even though
the presented environment and scenarios are relatively simple, it shows that they
can be used as an effective agent modeling tool. Our future work will be based
on using these bacteria in simulating behaviors of companies, vehicles or people
and applying them to real world situations.
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